Background: 5-Aminolevulinic acid (5-ALA) has become an integral part in the neurosurgical treatment of malignant glioma. Over time, several other tumor entities have been identified to metabolize 5-ALA and show a similar fluorescence pattern during surgical resection. This case report is the first description of 5-ALA accumulation in postischemic cerebral tissue. This evidence questions the assumption that 5-ALA accumulation in glioma is exclusively attributed to tumor infiltration. Instead, 5-ALA accumulation can also occur beyond the tumor borders and may be partially ascribed to inflammatory changes in the surrounding brain tissue.
Case Description: A 64-year old woman presented with episodes of apraxia and a ring-enhancing lesion in postcontrast T1-weighted magnetic resonance sequences suggestive of high grade glioma. Strong fluorescence was observed during 5-ALA-guided resection. However, although the frozen section was inconclusive, the final histopathologic examination revealed a stage II cerebral infarction.
Conclusions: 5-ALA accumulation in postischemic cerebral tissue should be considered for intended supramarginal resections near eloquent brain regions. Therefore, sufficient preoperative imaging should regularly include magnetic resonance imaging spectroscopy and perfusion sequences to ascertain the proper diagnosis. Moreover, further research is warranted to determine the role of 5-ALA accumulation in postischemic and inflammatory brain tissue.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.wneu.2016.05.009 | DOI Listing |
Bioprocess Biosyst Eng
January 2025
Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea.
p-Coumaric acid (p-CA), an invaluable phytochemical, has novel bioactivities, including antiproliferative, anxiolytic, and neuroprotective effects, and is the main precursor of various flavonoids, such as caffeic acid, naringenin, and resveratrol. Herein, we report the engineering of Escherichia coli for de novo production of p-CA via the PAL-C4H pathway. As the base strain, we used the E.
View Article and Find Full Text PDFFood Chem
January 2025
SKL of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299 Sansha Road, Qingdao 266404, PR China. Electronic address:
The conversion of alpha-linolenic acid (ALA) in feed to DHA in egg is inefficient, so there is a critical need for feed additives that can enhance the enrichment of docosahexaenoic acid (DHA) in egg yolk from ALA-rich feed. The present study evaluated the impact of dietary fucoxanthin on the conversion efficiency of ALA in feed to DHA in quail egg yolk. Results showed that the addition of 0.
View Article and Find Full Text PDFSci Rep
January 2025
Research Division, JIMRO Co., Ltd., Takasaki, Japan.
This study investigated whether intravenous administration of tumor cells killed by photodynamic therapy (PDT) with 5-aminolevulinic acid (5-ALA) had antitumor effects on distal tumors. Furthermore, a novel extracorporeal blood circulating 5-ALA/PDT system was developed. 5-ALA/PDT- (low or high irradiation) or anticancer drug-treated cells were intravenously administered to rats in a glioma cancer model.
View Article and Find Full Text PDFJ Adv Res
December 2024
College of Horticulture, Nanjing Agricultural University, Nanjing 21095, China. Electronic address:
Introduction: 5-Aminolevulinic acid (ALA) is an essential biosynthetic precursor of tetrapyrrole compounds, naturally occurring in all living organisms. It has also been suggested as a new plant growth regulator. Treatment with ALA promotes strawberry Na homeostasis under salt stress.
View Article and Find Full Text PDFCureus
November 2024
Internal Medicine-Pediatrics, University of California Los Angeles, Los Angeles, USA.
Acute intermittent porphyria (AIP) is a rare inherited metabolic disorder caused by decreased activity of the enzyme porphobilinogen deaminase in the heme synthesis pathway. This leads to the accumulation of toxic porphyrin precursors, such as porphobilinogen and δ-aminolevulinic acid. Clinical manifestations typically include episodic bouts of severe neurovisceral pain and autonomic dysfunction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!