Microalgae cultivation as tertiary unit operation for treatment of pharmaceutical wastewater associated with lipid production.

Bioresour Technol

Bioengineering and Environmental Sciences (BEES), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India. Electronic address:

Published: September 2016

AI Article Synopsis

  • Microalgae effectively purified pharmaceutical wastewater treated by a sequential batch reactor, achieving a 73% carbon removal and 62% nitrate removal during the biomass growth phase.
  • The process resulted in a total biomass productivity of 2.8g/l, with significant lipid content produced under both light and dark conditions, indicating a flexible lipid production strategy.
  • This integration of microalgae cultivation enhances environmental sustainability and supports greener biofuel production in a biorefinery approach.

Article Abstract

Microalgae based treatment was studied to polish sequential batch reactor (SBR) treated pharmaceutical wastewater under mixotrophic mode of operation with simultaneous biomass/lipid production. At the end of biomass growth phase (BGP), carbon removal efficiency was observed to be 73% along with good removal of nitrates (62%). Since microalgae assimilate nutrients from wastewater for growth, an increment in total biomass productivity (2.8g/l) was observed. Subjecting to nutrient stress phase (NSP), total lipid content of 17.2% with neutral lipids of 6.2% was observed under light condition. Contrarily, dark condition depicted total lipid content of 15.8% with neutral lipids constituting 6.5%. The nutrient stress in combination with light showed marked influence on the profile of saturated and unsaturated fatty acids. Integration of microalgae cultivation improves environmental sustainability and enables greener routes of biofuels and value added products synthesis in a biorefinery approach.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2016.04.101DOI Listing

Publication Analysis

Top Keywords

microalgae cultivation
8
pharmaceutical wastewater
8
nutrient stress
8
total lipid
8
lipid content
8
neutral lipids
8
microalgae
4
cultivation tertiary
4
tertiary unit
4
unit operation
4

Similar Publications

Construction and transcriptomic analysis of salinity-induced lipid-rich flocculent microalgae.

J Environ Manage

January 2025

School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316000, China; National & Local Joint Engineering Research Center of Harbor Oil & Gas Storage and Transportation Technology, Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan, 316000, China. Electronic address:

The lack of cost-effective nutrient sources and harvesting methods is currently a major obstacle to the production of sustainable biofuels from microalgae. In this study, Chlorella pyrenoidosa was cultured with saline wastewater in a stirred photobioreactor, and lipid-rich flocculent microalgae particles were successfully constructed. As the influent salinity of the photobioreactor increased from 0% to 3%, the particle size and sedimentation rate of flocculent microalgae particles gradually increased, and the lipid accumulation of microalgae also increased gradually.

View Article and Find Full Text PDF

The aim of the current investigation is to explore the novel application of pumpkin, papaya, and orange peels as growth substrates for microalgae cultivation, with the overarching goal of advancing a sustainable "Agro to Agro" biorefinery paradigm. The research evaluates the integration of waste management practices into microalgal production, optimizing growth parameters to maximize output. Optimal concentrations of 2.

View Article and Find Full Text PDF

Applications of low-temperature plasma technology in microalgae cultivation and mutant breeding: A comprehensive review.

Bioresour Technol

December 2024

CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei 230031, China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China. Electronic address:

Low-temperature plasma (LTP) has gained significant attention recently due to its unique properties and potentially wide applications in agriculture, medicine, and food industry. Microalgae have become important to human life since they provide raw materials and bioactive products to industries. This review especially examines how LTP technology can be utilized to enhance microalgae growth and production of various metabolites and bioactive compounds such as astaxanthin, biofuel, lipid, proteins, and polysaccharides through mutagenesis and/or stimulation.

View Article and Find Full Text PDF

Trimethoprim (TMP) and sulfamethoxazole (SMX) are bacteriostatic agents, which are co-administered to patients during infection treatment due to their synergetic effects. Once consumed, TMP and SMX end up in wastewater and are directed to municipal wastewater treatment plants (WWTPs) which fail to remove these contaminants from municipal wastewater. The discharge of WWTP effluents containing antibiotics in the environment is a major concern for public health as it contributes to the spread of antimicrobial resistance.

View Article and Find Full Text PDF

In this research, a sustainable blue-green infrastructure (BGI) was developed to efficiently remove contaminants from stormwater through a combined use of modified porous asphalt (PA) and microalgae cultivation to provide a potential drinking water (DW) source. According to the results, the modified PA with powder activated carbon (PAC) could successfully reduce the level of total suspended solids (TSS), turbidity, polycyclic aromatic hydrocarbons (PAHs), oil and grease to below the DW standards but failed to efficiently remove some heavy metals (HMs) and nutrient pollutants. The results revealed that the treated stormwater was an appropriate medium for microalgae cultivation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!