Gamma irradiation of a grain during embryogenesis at an intensity only 100 times exceeding that of the natural radioactive background reduces by 4-7 h the average time of embryogenesis for different species and hybrids of thesilworm embryo. The 10- and 40-time increase in the radiation intensity decreases the stimulatory effect and leads to the delay in the development.

Download full-text PDF

Source

Publication Analysis

Top Keywords

gamma irradiation
8
[effect chronic
4
chronic low-intensity
4
low-intensity gamma
4
irradiation embryogenesis
4
embryogenesis silkworm
4
silkworm bombyx
4
bombyx mori
4
mori gamma
4
irradiation grain
4

Similar Publications

The coupling effect of gamma-ray radiation and 532 nm nanosecond laser radiation on optical coatings and substrates was investigated. Fused silica and S-BSL7 glass with 532 nm high reflectivity (HR) coatings were irradiated using Co gamma-ray source at a dose rate of 1 Gy/s for a total dose of 1-500 kGy. After irradiation, the samples were subjected to raster scan testing using a laser with a pulse width of approximately 8.

View Article and Find Full Text PDF

Central Nervous System Response Against Ionizing Radiation Exposure: Cellular, Biochemical, and Molecular Perspectives.

Mol Neurobiol

January 2025

Radiation Biotechnology Department, Institute of Nuclear Medicine and Allied Sciences (INMAS), Defence Research and Development Organization (DRDO), Brig. S.K. Mazumdar Road, Timarpur, Delhi, 110054, India.

Gamma radiation is known to induce several detrimental effects on the nervous system. The hippocampus region, specifically the dentate gyrus (DG) and subventricular zone (SVZ), have been identified as a radiation-sensitive neurogenic niche. Radiation alters the endogenous redox status of neural stem cells (NSCs) and other proliferative cells, especially in the hippocampus region, leading to oxidative stress, neuroinflammation, and cell death.

View Article and Find Full Text PDF

A simple plan strategy to optimize the biological effective dose delivered in robotic radiosurgery of vestibular schwannomas.

Phys Med Biol

January 2025

Radiotherapy and Radiosurgery department, Iatropolis Clinic, 54 Ethnikis Antistaseos ave., Athens, Attica, 15231, GREECE.

Using the concept of biologically effective dose (BED), the effect of sublethal DNA damage repair (SLR) on the bio-efficacy of prolonged radiotherapy treatments can be quantified (BED). Such treatments, lasting more than 20 min, are typically encountered in stereotactic radiosurgery (SRS) applications using the CyberKnife (CK) and Gamma knife systems. Evaluating the plan data from 45 Vestibular Schwannoma (VS) cases treated with single fraction CK-SRS, this work demonstrates a statistically significant correlation between the marginal BEDSLR delivered to the target (m-BEDSLR) and the ratio of the mean collimator size weighted by the fraction of total beams delivered with each collimator ((_w^m)Cs), to the tumor volume (Tv).

View Article and Find Full Text PDF

Objectives: Hepatocellular carcinoma (HCC) represents the third-most prevalent cancer in humans worldwide. The current study's objective is to search for the potentiality of H. Wendl () leaf extract in a nanoemulsion (NE) form in enhancing radiotherapy against HCC induced in rats using diethylnitrosamine (DEN).

View Article and Find Full Text PDF

Objectives: Bacille Calmette-Guérin (BCG) vaccination has off-target effects on disease risk for unrelated infections and immune responses to vaccines. This study aimed to determine the immunomodulatory effects of BCG vaccination on immune responses to vaccines against SARS-CoV-2.

Methods: Blood samples, from a subset of 275 SARS-CoV-2-naïve healthcare workers randomised to BCG vaccination (BCG group) or no BCG vaccination (Control group) in the BRACE trial, were collected before and 28 days after the primary course (two doses) of ChAdOx1-S (Oxford-AstraZeneca) or BNT162b2 (Pfizer-BioNTech) vaccination.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!