Introduction: Piperazine, a six membered nitrogen containing heterocycle, is of great significance to the rational design of drugs. This moiety can be found in a plethora of well-known drugs with various therapeutic uses, such as antipsychotic, antihistamine, antianginal, antidepressant, anticancer, antiviral, cardio protectors, anti-inflammatory, and imaging agents. Slight modification to the substitution pattern on the piperazine nucleus facilitates a recognizable difference in the medicinal potential of the resultant molecules.
Areas Covered: Scifinder was the main source used to search for patents containing piperazine compounds with therapeutic uses. The article describes a variety of molecular designs bearing piperazine entity furnishing CNS agents, anticancer, cardio-protective agents, antiviral, anti-tuberculosis, anti-inflammatory, antidiabetic, and antihistamine profiles, as well as agents relieving pain and useful in imaging applications.
Expert Opinion: The great interest gathered to explore piperazine based molecules in relatively few years reflects the broad potential of the entity. Earlier, this scaffold was considered to express CNS activity only. However, a significant increase in research covering studies of several different activities of piperazine ring suggest a successful emergence of the pharmacophore. Certain patents outlined in the present article recommend that piperazines can be a flexible building block to discover drug-like elements and modification of substituents present on the piperazine ring may have a significant impact on the pharmacokinetic and pharmacodynamics factors of the resulting molecules. This article aims to provide insights to piperazine based molecular fragments that would assist drug discoverers to rationally design molecules for various diseases. We anticipate, and highly recommend, further therapeutic investigations on this motif.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/13543776.2016.1189902 | DOI Listing |
Nat Commun
January 2025
School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China.
Thin-film composite polyamide (TFC PA) membranes hold promise for energy-efficient liquid separation, but achieving high permeance and precise separation membrane via a facile approach that is compatible with present manufacturing line remains a great challenge. Herein, we demonstrate the use of lignin alkali (LA) derived from waste of paper pulp as an aqueous phase additive to regulate interfacial polymerization (IP) process for achieving high performance nanofiltration (NF) membrane. Various characterizations and molecular dynamics simulations revealed that LA can promote the diffusion and partition of aqueous phase monomer piperazine (PIP) molecules into organic phase and their uniform dispersion on substrate, accelerating the IP reaction and promoting greater interfacial instabilities, thus endowing formation of TFC NF membrane with an ultrathin, highly cross-linked, and crumpled PA layer.
View Article and Find Full Text PDFHum Cell
January 2025
Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, No. 126 Sendai Street, Nanguan District, Changchun, 130031, China.
Imatinib resistance is a major obstacle to the successful treatment of gastrointestinal stromal tumors (GIST). Long non-coding RNAs (LncRNAs) have been identified as important regulatory factors in chemotherapy resistance. This study aimed to identify key lncRNAs involved in imatinib resistance of GISTs.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
Background: We aim to investigate efficacies of Ras homolog (Rho)-associated kinases (ROCK) inhibitors on Alzheimer's disease (AD) pathological proteins in human induced pluripotent stem cell (iPSC)-differentiated human neurons and the P301S tau transgenic mouse model (PS19).
Method: Quantitative liquid chromatography-mass spectrometry (LC-MS/MS) and targeted ELISA were implemented to investigate the effect of treatment with fasudil or its derivatives on the human neurons and brains from PS19 mice. We explored the efficacy of these ROCK inhibitors in reducing tau phosphorylation, and the brain proteomic profiles after their administration in mice.
Alzheimers Dement
December 2024
Mental Health Center, West China Hospital, Sichuan University, Chengdu, China.
Background: Behavioral and psychological symptoms of dementia (BPSD) are highly prevalent in people living with dementia. Atypical antipsychotics (AAPs) are commonly used to treat BPSD, but their comparative efficacy and acceptability are unknown.
Methods: This study was conducted following the guidelines of the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA).
Fundam Clin Pharmacol
February 2025
PRISM Biogénopôle La Timone University Hospital of Marseille, APHM, Marseille, France.
Background: Imatinib is the treatment of elderly or frail patients with chronic myeloid leukemia (CML). Trough levels of around 1000 ng/ml are considered as the target exposure.
Objectives: We searched for baseline parameters associated with imatinib pharmacokinetics, and studied the clinical impact of subsequent adaptive dosing.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!