Tetraspanins are a heterogeneous group of 4-transmembrane proteins that recruit other cell surface receptors and signaling proteins into tetraspanin-enriched microdomains (TEMs). TEMs of various types are involved in the regulation of cell growth, migration and invasion of several tumor cell types, both as suppressors or promotors. Tetraspanin 9 (Tspan9, NET-5, PP1057), a member of the transmembrane 4 superfamily (TM4SF) of tetraspanins, reportedly regulates platelet function in concert with other platelet tetraspanins and their associated proteins. Our previous study demonstrated that Tspan9 is also expressed in gastric cancer (GC), but the role of Tspan9 in GC has not been well characterized. In this study, we investigated the influence of Tspan9 on proliferation, migration and invasion of human gastric cancer SGC7901 cells using CCK-8 assay, cell cycle analysis, wound-healing assay and Transwell assay. Western blot analysis and ELISA assay were also performed to identify the potential mechanisms involved. The proliferation, migration and invasion of human gastric cancer SGC7901 cells were significantly inhibited by overexpression of Tspan9. In addition, Tspan9 downregulated the phosphorylation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) and the secretion levels of proteins related to tumor metastasis, such as matrix metalloproteinase-9 (MMP-9) and urokinase plasminogen activator (uPA). Our study indicated that Tspan9 inhibited SGC7901 cell proliferation, migration and invasion through the ERK1/2 pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3892/or.2016.4805 | DOI Listing |
J Mol Histol
January 2025
Obstetrics and Gynecology, The Affiliated People's Hospital of Ningbo University, 251 East Baizhang Road, Ningbo, 315040, Zhejiang, China.
Long non-coding RNAs (lncRNAs) have emerged as pivotal regulatory molecules in cancer biology. Among these, long intergenic non-protein coding RNA 02418 (LINC02418), a recently identified lncRNA, has been linked to endometrial cancer (EC), although its function and operational mechanisms are largely unclear. The present investigation aims to elucidate the molecular mechanism through which LINC02418 influences EC pathogenesis.
View Article and Find Full Text PDFTurk J Gastroenterol
January 2025
Department of Gastrointestinal Surgery, Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
Background/aims: Cholangiocarcinoma (CCA) is a malignant and insidious tumor that is tricky to treat. Long non-coding RNA (LncRNA) LINC01123 is a biomolecule that influences cancer progression by regulating gene expression via influencing the regulatory function of microRNAs in gene expression. Therefore, this study investigated the connection between LINC01123 and CCA and explored the underlying mechanism.
View Article and Find Full Text PDFTurk J Gastroenterol
January 2025
Department of Gastrointestinal and Thoracic Surgery, Jiulongpo People's Hospital, Chongqing, China.
Background/aims: Colon adenocarcinoma (COAD) is a prevalent malignant tumor of the digestive system. Previous research has indicated that RNA N6-methyladenosine (m6A) methyltransferase RNA-binding motif protein-15 (RBM15) is involved in various cancers. We aimed to investigate the function of RBM15 in COAD progression and its underlying molecular mechanism.
View Article and Find Full Text PDFThorac Cancer
January 2025
Department of Thoracic Surgery, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China.
Background: Our study aimed to explore the specific functions and potential mechanisms of miR-224-5p in non-small cell lung cancer (NSCLC).
Methods: We first analyzed the expression of miR-224-5p in NSCLC patients and cell lines through the GEO database and qRT-PCR analysis. Then, we used MTT assays, wound healing assays, Transwell assays, and western blotting to evaluate the effects of miR-224-5p on NSCLC cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT).
Adv Healthc Mater
January 2025
Nitte (Deemed to be University), Department of Bio & Nano Technology, Nitte University Centre for Science Education and Research, Mangalore, Karnataka, 575018, India.
Therapeutic strategy for efficiently targeting cancer cells needs an in-depth understanding of the cellular and molecular interplay in the tumor microenvironment (TME). TME comprises heterogeneous cells clustered together to translate tumor initiation, migration, and proliferation. The TME mainly comprises proliferating tumor cells, stromal cells, blood vessels, lymphatic vessels, cancer-associated fibroblasts (CAFs), extracellular matrix (ECM), and cancer stem cells (CSC).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!