Fulvic acid (FA) is known to promote electrochemical balance as a donor or a receptor possessing many biomedical functions. Nevertheless, the effect of FA on the anti-cancer activity has not been elucidated. In the current study, we first isolated FA from humus and investigated whether FA regulates immune-stimulating functions, such as production of nitric oxide (NO), in RAW 264.7 cells. Our data showed that FA slightly enhances cell viability in a dose-dependent manner and secretion of NO from RAW 264.7 cells. It upregulated the protein and mRNA expression of inducible NO synthesis (iNOS). In addition, FA enhanced the DNA-binding activity of nuclear factor-κB (NF-κB) in RAW 264.7 cells; the NF-κB inhibitor, pyrrolidine dithiocarbamate (PDTC) effectively attenuated the expression of FA-stimulated iNOS, suggesting that FA stimulates NF-κB to promote iNOS and NO production. Finally, FA-stimulated culture media (FA-CM) from RAW 264.7 cells were collected and MCA-102 fibrosarcoma cells were cultured in this media. The FA-CM augmented MCA-102 fibrosarcoma cell apoptosis; however, an NO inhibitor N(G)-monomethyl-l-arginine (NMMA) slightly inhibited the FA-CM-mediated MCA-102 fibrosarcoma cell apoptosis, which was accompanied by low levels of NO. In the present study, we found that FA induces the generation of NO and iNOS in RAW 264.7 cells by inducing NF-κB activation; however, NO did not significantly stimulate MCA-102 fibrosarcoma cell apoptosis in the current study. In addition, FA-CM enhanced cell death in various human cancer cells such as Hep3B, LNCaP, and HL60. Taken together, FA most likely stimulates immune-modulating molecules such as NO and induces cancer cell apoptosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.intimp.2016.04.029 | DOI Listing |
Antioxidants (Basel)
December 2024
Departamento de Medicina y Zootecnia de Rumiantes, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico.
The most common bee species used for honey production is (), followed by stingless bees. This study included scientific articles using the PRISMA approach. A random effect model was implemented and the effect size (ES) was calculated and reported as the standardized mean difference (SMD) and raw mean difference (RMD).
View Article and Find Full Text PDFGels
December 2024
Multimaterials and Interfaces Laboratory (LMI), CNRS UMR 5615, University Claude Bernard Lyon 1, University of Lyon, 6 rue Victor Grignard, 69622 Villeurbanne, France.
Temporomandibular disorders (TMD) are a public health problem that affects around 12% of the global population. The treatment is based on analgesics, non-steroidal anti-inflammatory, corticosteroids, anticonvulsants, or arthrocentesis associated with hyaluronic acid-based viscosupplementation. However, the use of hyaluronic acid alone in viscosupplementation does not seem to be enough to regulate the intra-articular inflammatory process.
View Article and Find Full Text PDFACS Meas Sci Au
December 2024
Chemical and Optical Sensing Division, Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Str. 11, Berlin D-12489, Germany.
Flow cytometry-based immunoassays are valuable in biomedical research and clinical applications due to their high throughput and multianalyte capability, but their adoption in areas such as food safety and environmental monitoring is limited by long assay times and complex workflows. Rapid, simplified bead-based cytometric immunoassays are needed to make these methods viable for point-of-need applications, especially with the increasing accessibility of miniaturized cytometers. This work introduces superparamagnetic hybrid polystyrene-silica core-shell microparticles as promising alternatives to conventional polymer beads in competitive cytometric immunoassays.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2024
Department of Advanced Materials for Energy, Catalonia Institute for Energy Research (IREC), Barcelona 08930, Spain.
The implementation of nanocomposite materials as electrode layers represents a potential turning point for next-generation of solid oxide cells in order to reduce the use of critical raw materials. However, the substitution of bulk electrode materials by thin films is still under debate especially due to the uncertainty about their performance and stability under operando conditions, which restricts their use in real applications. In this work, we propose a multiphase nanocomposite characterized by a highly disordered microstructure and high cationic intermixing as a result from thin-film self-assembly of a perovskite-based mixed ionic-electronic conductor (lanthanum strontium cobaltite) and a fluorite-based pure ionic conductor (samarium-doped ceria) as an oxygen electrode for reversible solid oxide cells.
View Article and Find Full Text PDFMolecules
June 2024
Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!