Effect of ambient temperature and relative humidity on interfacial temperature during early stages of drop evaporation.

Phys Rev E

International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.

Published: April 2016

Understanding drop evaporation mechanisms is important for many industrial, biological, and other applications. Drops of organic solvents undergoing evaporation have been found to display distinct thermal patterns, which in turn depend on the physical properties of the liquid, the substrate, and ambient conditions. These patterns have been reported previously to be bulk patterns from the solid-liquid to the liquid-gas drop interface. In the present work the effect of ambient temperature and humidity during the first stage of evaporation, i.e., pinned contact line, is studied paying special attention to the thermal information retrieved at the liquid-gas interface through IR thermography. This is coupled with drop profile monitoring to experimentally investigate the effect of ambient temperature and relative humidity on the drop interfacial thermal patterns and the evaporation rate. Results indicate that self-generated thermal patterns are enhanced by an increase in ambient temperature and/or a decrease in humidity. The more active thermal patterns observed at high ambient temperatures are explained in light of a greater temperature difference generated between the apex and the edge of the drop due to greater evaporative cooling. On the other hand, the presence of water humidity in the atmosphere is found to decrease the temperature difference along the drop interface due to the heat of adsorption, absorption and/or that of condensation of water onto the ethanol drops. The control, i.e., enhancement or suppression, of these thermal patterns at the drop interface by means of ambient temperature and relative humidity is quantified and reported.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.93.043103DOI Listing

Publication Analysis

Top Keywords

ambient temperature
20
thermal patterns
20
temperature relative
12
relative humidity
12
drop interface
12
drop
8
drop evaporation
8
temperature difference
8
ambient
7
temperature
7

Similar Publications

The geographic mosaic of coevolution predicts reciprocal selection, the first step in coevolution, to vary with changing biotic and abiotic environmental conditions. Studying how temperature affects reciprocal selection is essential to connect effects of global warming on the microevolutionary patterns of coevolution to the ecological processes underlying them. In this study, we investigated whether temperature influenced reciprocal selection between a plant (Brassica rapa) and its pollinating butterfly herbivore (Pieris rapae).

View Article and Find Full Text PDF

Bidirectional effect modifications of temperature and PM on myocardial infarction morbidity and mortality in Beijing, China from 2007 to 2021.

Ecotoxicol Environ Saf

January 2025

Center for Clinical and Epidemiologic Research, Beijing An Zhen Hospital, Capital Medical University, Beijing, China; Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China; National Clinical Research Center of Cardiovascular Diseases, Beijing, China; The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China; The Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China. Electronic address:

Background: Ambient temperatures and PM can trigger myocardial infarction (MI), while little is known about the complex interplay between these two factors on MI, especially morbidity.

Objectives: To investigate bidirectional effect modifications of temperature and PM on MI morbidity and mortality.

Methods: A time-stratified case-crossover study was conducted utilizing high-resolution data of temperature and PM, along with 498,077 MI cases from the citywide registry in Beijing, China from 2007 to 2021.

View Article and Find Full Text PDF

The creation of any model is complex requiring vast amounts of data, typically gathered over a series of experiments. Specifically the temperature humidity index (THI) and heat load index (HLI) are used as management tools to implement mitigation strategies during hot climatic conditions. Exposure of the testes to hot climatic conditions has a negative impact on spermatogenesis in the bull, and other species.

View Article and Find Full Text PDF

Acid adaptive response (AAR) is a survival mechanism that allows bacteria to develop enhanced stress tolerance. Our previous research identified AAR in Alicyclobacillus acidoterrestris, a thermo-acidophilic bacterium responsible for fruit juice spoilage. However, the roles of specific acidulants, adaptive temperatures, and acidic juice matrices in triggering AAR remain elusive.

View Article and Find Full Text PDF

Tribological Properties of Selected Ionic Liquids in Lubricated Friction Nodes.

Materials (Basel)

December 2024

Faculty of Civil Engineering, Mechanics and Petrochemistry, Warsaw University of Technology, 09-400 Płock, Poland.

This article compares the rheological and tribological properties of three ionic liquids: Tributyl(methyl)phosphonium dimethyl phosphate 97%-MFCD, 1-Butyl-3-methylimidazolium hexafluorophosphate 97%-BMIMPF6, and 1-Butyl-3-methylimidazolium tetrafluoroborate 98%-BMIMBF4. Their density and kinematic viscosity at 20 °C and 40 °C were investigated, and tribological tests were carried out at the same temperatures with ball-on-disc contact. The test materials were made of 100Cr6 steel.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!