We investigate the nonlinear wave dynamics of origami-based metamaterials composed of Tachi-Miura polyhedron (TMP) unit cells. These cells exhibit strain softening behavior under compression, which can be tuned by modifying their geometrical configurations or initial folded conditions. We assemble these TMP cells into a cluster of origami-based metamaterials, and we theoretically model and numerically analyze their wave transmission mechanism under external impact. Numerical simulations show that origami-based metamaterials can provide a prototypical platform for the formation of nonlinear coherent structures in the form of rarefaction waves, which feature a tensile wavefront upon the application of compression to the system. We also demonstrate the existence of numerically exact traveling rarefaction waves in an effective lumped-mass model. Origami-based metamaterials can be highly useful for mitigating shock waves, potentially enabling a wide variety of engineering applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.93.043004 | DOI Listing |
ACS Nano
January 2025
State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
Higher-order DNA nanomaterials have emerged as programmable tools for probing biological processes, constructing metamaterials, and manipulating mechanically active nanodevices with the multifunctionality and high-performance attributes. However, their utility is limited by intricate mixtures formed during hierarchical multistage assembly, as standard techniques like gel electrophoresis lack the resolution and applicability needed for precise characterization and enrichment. Thus, it is urgent to develop a sorter that provides high separation resolution, broad scope, and bioactive functionality.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
October 2024
Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27606, USA.
We explore a new design strategy of leveraging kinematic bifurcation in creating origami/kirigami-based three-dimensional (3D) hierarchical, reconfigurable, mechanical metamaterials with tunable mechanical responses. We start from constructing three basic, thick, panel-based structural units composed of 4, 6 and 8 rigidly rotatable cubes in close-looped connections. They are modelled, respectively, as 4R, 6R and 8R (R stands for revolute joint) spatial looped kinematic mechanisms, and are used to create a library of reconfigurable hierarchical building blocks that exhibit kinematic bifurcations.
View Article and Find Full Text PDFSci Rep
September 2024
Department of Electrical and Electronic Engineering, Faculty of Engineering, Utsunomiya University, 7-1-2 Yoto, Utsunomiya, Tochigi, 321-8585, Japan.
Skyrmion structures play critical roles in solid-state systems involving electric, magnetic and optical fields. Previous approaches to the study of skyrmions have involved specific structures in magnetic materials, liquid crystals and polymers in addition to two-dimensional arrays used for electrical control. These methods have encountered limitations and constraints on both the microscopic and macroscopic scales related to the physical properties of materials.
View Article and Find Full Text PDFNat Commun
July 2024
Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, 27606, USA.
Shape-morphing capabilities are crucial for enabling multifunctionality in both biological and artificial systems. Various strategies for shape morphing have been proposed for applications in metamaterials and robotics. However, few of these approaches have achieved the ability to seamlessly transform into a multitude of volumetric shapes post-fabrication using a relatively simple actuation and control mechanism.
View Article and Find Full Text PDFACS Nano
January 2024
Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea.
DNA origami-based templates have been widely used to fabricate chiral plasmonic metamaterials due to their precise control of the placement of nanoparticles (NPs) in a desired configuration. However, achieving various chiroptical responses inevitably requires a change in the structure of DNA origami-based templates or binding sites on them, leading to the use of significantly different sets of DNA strands. Here, we propose an approach to controlling various chiroptical responses with a single DNA origami design using its chemo-mechanical deformation induced by DNA intercalators.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!