We report a bilayer-like electron-beam lithographic process to obtain three-dimensional (3D) nanostructures by using only a single hydrogen silsesquioxane (HSQ) resist layer. The process utilizes the short penetration depth of low-energy (1.5 keV) electron irradiation to first obtain a partially cross-linked HSQ top layer and then uses a high-voltage electron beam (30 keV) to obtain self-aligned undercut (e.g. mushroom-shaped) and freestanding HSQ nanostructures. Based on the well-defined 3D resist patterns, 3D metallic nanostructures were directly fabricated with high fidelity by just depositing a metallic layer. As an example, Ag-coated mushroom-shaped nanostructures were fabricated, which showed lower plasmon resonance damping compared to their planar counterparts. In addition, the undercut 3D nanostructures also enable more reliable lift-off in comparison with the planar nanostructures, with which high-quality silver nanohole arrays were fabricated which show distinct and extraordinary optical transmission in the visible range.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0957-4484/27/25/254002 | DOI Listing |
Nanoscale
December 2024
Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, USA.
SiGe alloy nanocrystals (NCs) are a class of benign semiconductors that show size and composition-tunable energy gaps and promising optical properties because of the lattice disorder. The random distribution of elements within the alloys can lead to efficient light-matter interactions, making them attractive for Si-compatible optoelectronic devices, transistors, charge storage, and memory applications. However, the fabrication of discrete, quantum-confined alloys has proved a challenging task.
View Article and Find Full Text PDFChemistry
December 2024
Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal.
Self-assembly synthesis of mixed-ligand (silsesquioxane/acetate) complex allows to isolate record high nuclear copper(II) Cu-cage (1). In the presence of two additional sodium ions, a unique molecular architecture, with triple combination of ligands (cyclic and acyclic silsesquioxanes as well as acetates), has been formed. The structure was established by single-crystal X-ray diffraction based on the use of synchrotron radiation.
View Article and Find Full Text PDFDistributed feedback laser diodes (DFBs) serve as simple, compact, narrow-band light sources supporting a wide range of photonic applications. Typical linewidths are on the order of sub-MHz for free-running III-V DFBs at infrared wavelengths, but linewidths of short-wavelength GaN-based DFBs are considerably worse or unreported. Here, we present a free-running InGaN DFB operating at 443 nm with an intrinsic linewidth of 685 kHz at a continuous wave output power of 40 mW.
View Article and Find Full Text PDFJ Synchrotron Radiat
November 2024
Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom.
Hard X-ray microscopes with 20-30 nm spatial resolution ranges are an advanced tool for the inspection of materials at the nanoscale. However, the limited efficiency of the focusing optics, for example, a Fresnel zone plate (ZP) lens, can significantly reduce the power of a nanoprobe. Despite several reports on ZP lenses that focus hard X-rays with 20 nm resolution - mainly constructed by zone-doubling techniques - a systematic investigation into the limiting factors has not been reported.
View Article and Find Full Text PDFNanotechnology
November 2024
Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China.
Electron beam lithography is a critical technology for achieving high-precision nanoscale patterning. The presence of resist residues in the structures can significantly affect subsequent processes such as etching and lift-off. However, the evaluation and optimization of resist residues currently relies on qualitative observations like scanning electron microscopy (SEM), necessitating multiple experiments to iteratively optimize exposure parameters, which is not only labor-intensive but also costly.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!