AI Article Synopsis

Article Abstract

Neurotoxin (NT), a short-chain α-neurotoxin, is the main neurotoxic protein identified from the venom of Naja naja atra. As an effective drug for the analgesis of advanced cancer patients, NT lasts longer than morphine and does not cause addiction. However, achieving a sensitive and high-resolution measurement of NT is difficult because of the extra-low content of NT in vivo. Therefore, developing a novel method to quantify NT is essential to study its pharmacokinetics in vivo. Although NT contains four primary amine groups that could react with the thiourea in fluorescein isothiocyanate (FITC), we developed a simple and reproducible single-label fluorescent derivatization method for NT which is related to the reaction of N-terminal α-amino of NT alone under optimized derivatization conditions. Furthermore, neurotoxin labelled with fluorescein isothiocyanate (NT-FITC) was prepared by high-performance liquid chromatography (HPLC) with a purity value higher than 99.29% and identified by MALDI-TOF/TOF-MS. Finally, NT-FITC could be detected at 0.8 nmol L(-1) in rat plasma using capillary electrophoresis coupled with laser induced fluorescence detection (CE-LIF). In this paper, the established method robustly and reliably quantified NT labelled with FITC via intravenous and intramuscular administrations in vivo. In addition, this work fully demonstrated the pharmacokinetic characteristics of NT in vivo, which could reduce the risk of drug accumulation, optimize therapies, and provide sufficient evidence for the rational use of NT in clinical and research laboratories.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c6an00327cDOI Listing

Publication Analysis

Top Keywords

single-label fluorescent
8
fluorescent derivatization
8
derivatization method
8
capillary electrophoresis
8
electrophoresis coupled
8
fluorescence detection
8
fluorescein isothiocyanate
8
vivo
5
method
4
method quantitative
4

Similar Publications

Dual bioorthogonal labeling enables the investigation and understanding of interactions in the biological environment that are not accessible by a single label. However, applying two bioorthogonal reactions in the same environment remains challenging due to cross-reactivity. We developed a pair of differently modified 2'-deoxynucleosides that solved this issue for dual and orthogonal labeling of DNA.

View Article and Find Full Text PDF

Exploring reliable and highly-sensitive SARS-CoV-2 antibody diagnosis by point-of-care (POC) manner, holds great public health significance for extensive COVID-19 screening and controlling. Unfortunately, the currently applied gold based lateral flow immunoassay (GLFIA) may expose both false-negative and false-positive interpretations owing to the sensitivity and specificity limitations, which may cause significant risk and waste of public resources for large population screening. To simultaneously overcome the drawbacks of GLFIA, a novel fluorescent LFIA based on signal amplification and dual-antigen sandwich structure was established with largely improved sensitivity and specificity.

View Article and Find Full Text PDF

The Design and Preclinical Evaluation of a Single-Label Bimodal Nanobody Tracer for Image-Guided Surgery.

Biomolecules

February 2021

Laboratory for In Vivo Cellular and Molecular Imaging, ICMI-BEFY, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.

Intraoperative guidance using targeted fluorescent tracers can potentially provide surgeons with real-time feedback on the presence of tumor tissue in resection margins. To overcome the limited depth penetration of fluorescent light, combining fluorescence with SPECT/CT imaging and/or gamma-ray tracing has been proposed. Here, we describe the design and preclinical validation of a novel bimodal nanobody-tracer, labeled using a "multifunctional single attachment point" (MSAP) label, integrating a Cy5 fluorophore and a diethylenetriaminepentaacetic acid (DTPA) chelator into a single structure.

View Article and Find Full Text PDF

Cardiovascular diseases are the number one death worldwide. Nitric oxide (NO)-NO-sensitive (soluble) guanylyl cyclase (sGC)-cyclic guanosine monophosphate (cGMP) pathway regulates diverse set of important physiological functions, including maintenance of cardiovascular homeostasis. Resting and activated sGC enzyme converts guanosine triphosphate to an important second messenger cGMP.

View Article and Find Full Text PDF

Glucagon-like peptide-1 (GLP-1) is an incretin hormone with a number of functions to maintain energy homeostasis and contribute to motivated behavior, both peripherally and within the central nervous system (CNS). These functions, which include insulin secretion, gastric emptying, satiety, and the hedonic aspects of food and drug intake, are primarily mediated through stimulation of the GLP-1 receptor. While this receptor plays an important role in a variety of physiological outcomes, data regarding its CNS expression has been primarily limited to regional receptor binding and single-label transcript expression studies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!