Wurtzite gallium phosphide (WZ GaP) has been predicted to exhibit a direct bandgap in the green spectral range. Optical transitions, however, are only weakly allowed by the symmetry of the bands. While efficient luminescence has been experimentally shown, the nature of the transitions is not yet clear. Here we apply tensile strain up to 6% and investigate the evolution of the photoluminescence (PL) spectrum of WZ GaP nanowires (NWs). The pressure and polarization dependence of the emission together with a theoretical analysis of strain effects is employed to establish the nature and symmetry of the transitions. We identify the emission lines to be related to localized states with significant admixture of Γ7c symmetry and not exclusively related to the Γ8c conduction band minimum (CBM). The results emphasize the importance of strongly bound state-related emission in the pseudodirect semiconductor WZ GaP and contribute significantly to the understanding of the optoelectronic properties of this novel material.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4901362PMC
http://dx.doi.org/10.1021/acs.nanolett.6b01038DOI Listing

Publication Analysis

Top Keywords

wurtzite gallium
8
gallium phosphide
8
optical properties
4
properties strained
4
strained wurtzite
4
phosphide nanowires
4
nanowires wurtzite
4
phosphide gap
4
gap predicted
4
predicted exhibit
4

Similar Publications

On the Surface Hardening of Zinc Sulfide Windows by Gallium Sulfide.

Materials (Basel)

November 2024

CREOL, The College of Optics and Photonics, University of Central Florida, 4304 Scorpius St., Orlando, FL 32816, USA.

Article Synopsis
  • * Using secondary ion mass spectrometry, the research found that gallium penetrates several tens of microns into the material without causing significant changes in structure, as indicated by X-ray diffraction.
  • * The results show that increasing gallium concentration leads to a substantial increase in surface hardness, achieving values more than double those of the untreated ZnS, with plans for future work to optimize this treatment for improved durability in harsh conditions.
View Article and Find Full Text PDF

Tunable GaAsP Quantum-Dot Emission in Wurtzite GaP Nanowires.

ACS Appl Mater Interfaces

November 2024

NEST Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza S. Silvestro 12, 56127 Pisa, Italy.

Article Synopsis
  • The study explores the synthesis of crystal-pure wurtzite gallium phosphide (GaP) nanowires containing gallium arsenide phosphide (GaAsP) quantum dots for emission in the visible-to-near-infrared spectrum (650-720 nm).
  • The research details the growth processes, challenges faced, and solutions, leading to precise control over the shape and composition of the quantum dots, which enhances wavelength tunability.
  • Results from low-temperature microphotoluminescence confirm the emission properties of the nanowires, demonstrating efficient carrier recombination and potential applications in quantum optics and nanophotonics.
View Article and Find Full Text PDF

GaN on Si plays an important role in the integration and promotion of GaN-based wide-gap materials with Si-based integrated circuits (IC) technology. A series of GaN film materials were grown on Si (111) substrate using a unique plasma assistant molecular beam epitaxy (PA-MBE) technology and investigated using multiple characterization techniques of Nomarski microscopy (NM), high-resolution X-ray diffraction (HR-XRD), variable angular spectroscopic ellipsometry (VASE), Raman scattering, photoluminescence (PL), and synchrotron radiation (SR) near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. NM confirmed crack-free wurtzite (w-) GaN thin films in a large range of 180-1500 nm.

View Article and Find Full Text PDF

The purpose of this study is to investigate the possibilities of the junction-less double-gate (JLDG) MOSFET structure with gallium nitride (GaN) channel material to overcome the limitations of conventional MOSFET structures in improving device performance at scaled gate lengths and voltages. The design targets of this study are the doping profile (N), and gate work function (Ф). The device has been modeled using the Silvaco Atlas 2D device simulator.

View Article and Find Full Text PDF

Analytical expressions for the low-field mobility of charge carrier gases with three-(3D), two-(2D) and one-(1D) dimensionalities are obtained. Multi-ion ionized impurities scattering, acoustic and polar optic phonons are considered as scattering mechanisms. The calculated values of mobility are compared to known experimental data for bulk (3D) n-and p-type wurtzite, n-type zinc-blende GaN crystals and low dimensional (2D and 1D) ternary GaAlN compounds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!