Infrared-responsive doped metal oxide nanocrystals are an emerging class of plasmonic materials whose localized surface plasmon resonances (LSPR) can be resonant with molecular vibrations. This presents a distinctive opportunity to manipulate light-matter interactions to redirect chemical or spectroscopic outcomes through the strong local electric fields they generate. Here we report a technique for measuring single nanocrystal absorption spectra of doped metal oxide nanocrystals, revealing significant spectral inhomogeneity in their mid-infrared LSPRs. Our analysis suggests dopant incorporation is heterogeneous beyond expectation based on a statistical distribution of dopants. The broad ensemble linewidths typically observed in these materials result primarily from sample heterogeneity and not from strong electronic damping associated with lossy plasmonic materials. In fact, single nanocrystal spectra reveal linewidths as narrow as 600 cm(-1) in aluminium-doped zinc oxide, a value less than half the ensemble linewidth and markedly less than homogeneous linewidths of gold nanospheres.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4869256 | PMC |
http://dx.doi.org/10.1038/ncomms11583 | DOI Listing |
Sci Adv
January 2025
Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Münster, Germany.
Systemic signaling is an essential hallmark of multicellular life. Pathogen encounter occurs locally but triggers organ-scale and organismic immune responses. In plants, elicitor perception provokes systemically expanding Ca and HO signals conferring immunity.
View Article and Find Full Text PDFPLoS One
January 2025
Ocean Georesources Research Department, Korea Institute of Ocean Science and Technology, Busan, Republic of Korea.
Banded iron formations (BIFs), significant iron ore deposits formed approximately 2.3 billion years ago under low-oxygen conditions, have recently gained attention as potential geological sources for evaluating hydrogen (H₂) production. BIFs are characterized by high concentrations of iron oxide (20 to 40 wt.
View Article and Find Full Text PDFJ Med Chem
January 2025
College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
The hypoxic environment of solid tumors significantly diminishes the therapeutic efficacy of oxygen-dependent photodynamic therapy. Developing efficient photosensitizers that operate photoredox catalysis presents a promising strategy to overcome this challenge. Herein, we report the rational design of two rhenium(I) tricarbonyl complexes ( and ) with electron donor-acceptor-donor configuration.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
February 2025
Zoology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt.
Schistosomiasis, caused by Schistosoma worms, is a major neglected tropical disease in Africa, this disease is ranked as second after malaria. Nanotechnology is important for treating schistosomiasis while minimizing chemotherapy side effects. The current investigate aimed to assess the effectiveness of biosynthesized zinc oxide nanoparticles (ZnO NPs), which were used for the first time in an attempt to find alternative treatment for schistosomiasis and synthesized by Origanum majorana, and to compare them with praziquantel (PZQ), the only chemical treatment approved by the World Health Organization.
View Article and Find Full Text PDFLangmuir
January 2025
CSSC Nanjing Lvzhou Environmental Protection Co., Ltd, Nanjing 210039, China.
In this study, the MnFeO@CoS magnetic nanocomposite was prepared by a two-step hydrothermal method and used to catalyze the ozone oxidation degradation of methylene blue. It was characterized by XRD, EDS, SEM, FT-IR, and XPS. The results showed that the introduction of CoS made MnFeO grow uniformly on CoS nanosheets, which effectively prevented the agglomeration of MnFeO.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!