Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The interaction of monodisperse fluorescent carboxylated polystyrene colloids (25nm and 1000nm diameter) with a cut granodiorite surface (Grimsel granodiorite; Switzerland) and with acrylic glass is investigated both experimentally and numerically. Colloid transport experiments are conducted in a parallel plate type fracture flow cell with an aperture of 0.75mm at pH5 under low ionic strength (1mM NaCl) and under laminar flow (7mL/h) conditions. The study focuses on the effect of residence time, colloid size, collector material and fracture orientation on colloid retention. Long colloid residence times are achieved by stop-flow experiments. Using atomic force microscopy and, more specifically, the colloid probe technique surface roughness and force distance information of the collector material (granodiorite or acrylic glass) as a function of probe size (cantilever) are obtained. The experiments are modeled using COMSOL Multiphysics® (2-D numerical simulations). The experimental and the modeled results lead to the conclusion that large colloids (1000nm diameter) undergo sedimentation and deposition on the surface during stop-flow. Collector interaction is not affected by the surface roughness variation. Contrariwise, for the investigated 25nm colloids sedimentation does not play a role under the experimental conditions and collector interaction is triggered by surface inhomogeneities such as surface roughness.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2016.04.045 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!