Powerful peracetic acid-ionic liquid pretreatment process for the efficient chemical hydrolysis of lignocellulosic biomass.

Bioresour Technol

Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Division of Biotechnology, Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.

Published: August 2016

The aim of this work was to design a new method for the efficient saccharification of lignocellulosic biomass (LB) using a combination of peracetic acid (PAA) pretreatment with ionic liquid (IL)-HCl hydrolysis. The pretreatment of LBs with PAA disrupted the lignin fractions, enhanced the dissolution of LB and led to a significant increase in the initial rate of the IL-HCl hydrolysis. The pretreatment of Bagasse with PAA prior to its 1-buthyl-3-methylimidazolium chloride ([Bmim][Cl])-HCl hydrolysis, led to an improvement in the cellulose conversion from 20% to 70% in 1.5h. Interestingly, the 1-buthyl-3-methylpyridium chloride ([Bmpy][Cl])-HCl hydrolysis of Bagasse gave a cellulose conversion greater than 80%, with or without the PAA pretreatment. For LB derived from seaweed waste, the cellulose conversion reached 98% in 1h. The strong hydrolysis power of [Bmpy][Cl] was attributed to its ability to transform cellulose I to II, and lowering the degree of polymerization of cellulose.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2016.04.121DOI Listing

Publication Analysis

Top Keywords

cellulose conversion
12
lignocellulosic biomass
8
paa pretreatment
8
il-hcl hydrolysis
8
hydrolysis pretreatment
8
hydrolysis
6
pretreatment
5
cellulose
5
powerful peracetic
4
peracetic acid-ionic
4

Similar Publications

γ-Glutamylcysteine (γ-EC) can increase intracellular glutathione (GSH) levels, which may prevent and alleviate age-related disorders and chronic diseases caused by oxidative damage. However, the commercial availability of γ-EC remains limited owing to its complex chemical synthesis from glutamate and cysteine. In this study, we have developed the method of the effective conversion of GSH to γ-EC to achieve the optimal reaction conditions for repeated batch production and potential application in industrial γ-EC production using the phytochelatin synthase-like enzyme NsPCS.

View Article and Find Full Text PDF

Highly salt-resistant and efficient dynamic Janus absorber based on thermo-responsive hydroxypropyl cellulose.

Mater Horiz

January 2025

School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China.

Recent advances in interfacial solar steam generation have made direct solar desalination a promising approach for providing cost-effective and environmentally friendly clean water solutions. However, developing highly effective, salt-resistant solar absorbers for long-term desalination at high efficiencies and evaporation rates remains a significant challenge. We present a Janus hydrogel-based absorber featuring a surface modified with thermo-responsive hydroxypropyl cellulose (HPC) and a hydrogel matrix containing photothermal conversion units, MXene, specifically designed for long-term seawater desalination.

View Article and Find Full Text PDF

Effective pretreatment of tea stem via poly-deep eutectic solvent for promoting platform molecule production and obtaining fluorescent lignin.

Int J Biol Macromol

January 2025

College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China; Research center of food biotechnology of Xiamen city, Xiamen, Fujian 361021, China. Electronic address:

In this study, polyethylene glycol 200 (PEG200) was employed as hydrogen bond acceptor, while organic acids served as hydrogen bond donors, to formulate poly-deep eutectic solvents (PDESs), which were utilized to pretreat tea stem. Specially, combining PEG200 and oxalic acid (OA) exhibited a notably high cellulose retention (82.03 %) and most efficient hemicellulose (97.

View Article and Find Full Text PDF

Visualising Analytes in Gas Chromatography by Staining and Substance Maps.

Talanta

January 2025

Institute of Chemistry of Renewable Resources, Department of Chemistry, BOKU University, Konrad-Lorenz-Straße 24, 3430, Tulln, Austria. Electronic address:

Chromatographic separations in combination with spectroscopic detectors are a main pillar of today's analytical chemistry. The recorded spectroscopic data is usually not shown in a typical chromatogram, therefore the contained additional information cannot be accessed readily by the analyst and is inspected in tedious additional routines, such as separate database searches. We developed a method to add colors to gas chromatograms with mass spectral detection.

View Article and Find Full Text PDF

Construction of efficient ethylene removal and antibacterial cellulose paper-based packaging materials for avocado preservation.

Int J Biol Macromol

January 2025

Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada. Electronic address:

Fruits are susceptible to ethylene ripening and microbial infestation, which can lead to spoilage and further significant economic losses. Thus, using functional preservation materials is an effective controlling technology to improve the post-harvest quality and extend the shelf life of fruits. Hence, a dual-function cellulose-based paper with exceptional antibacterial efficiency, favourable ethylene removal performance, improved mechanical and hydrophobic properties was prepared by covalently grafted antibacterial guanidine salt and surface-modified ethylene scavenger.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!