Upregulation of microRNA-22 contributes to myocardial ischemia-reperfusion injury by interfering with the mitochondrial function.

Free Radic Biol Med

Department of Physiology and The Key Laboratory of Molecular Neurobiology of Ministry of Education, Second Military Medical University, Shanghai 200433, China. Electronic address:

Published: July 2016

Mitochondrial oxidative damage is critically involved in cardiac ischemia reperfusion (I/R) injury. MicroRNA-22 (miR-22) has been predicted to potentially target sirtuin-1 (Sirt1) and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1α), both of which are known to provide protection against mitochondrial oxidative injury. The present study aims to investigate whether miR-22 is involved in the regulation of cardiac I/R injury by regulation of mitochondrial function. We found that miR-22 level was significantly increased in rat hearts subjected to I/R injury, as compared with the sham group. Intra-myocardial injection of 20 ug miR-22 inhibitor reduced I/R injury as evidenced by significant decreases in cardiac infarct size, serum lactate dehydrogenase (LDH) and creatine kinase (CK) levels and the number of apoptotic cardiomyocytes. H9c2 cardiomyocytes exposed to hypoxia/reoxygenation (H/R) insult exhibited an increase in miR-22 expression, which was blocked by reactive oxygen species (ROS) scavenger and p53 inhibitor. In addition, miR-22 inhibitor attenuated, whereas miR-22 mimic aggravated H/R-induced injury in H9c2 cardiomyocytes. MiR-22 inhibitor per se had no significant effect on cardiac mitochondrial function. Mitochondria from rat receiving miR-22 inhibitor 48h before ischemia were found to have a significantly less mitochondrial superoxide production and greater mitochondrial membrane potential and ATP production as compared with rat receiving miR control. In H9c2 cardiomyocyte, it was found that miR-22 mimic aggravated, whilst miR-22 inhibitor significantly attenuated H/R-induced mitochondrial damage. By using real time PCR, western blot and dual-luciferase reporter gene analyses, we identified Sirt1 and PGC1α as miR-22 targets in cardiomyocytes. It was found that silencing of Sirt1 abolished the protective effect of miR-22 inhibitor against H/R-induced mitochondrial dysfunction and cell injury in cardiomyocytes. Taken together, our findings reveal a novel molecular mechanism for cardiac mitochondrial dysfunction during myocardial I/R injury at the miRNA level and demonstrate the therapeutic potential of miR-22 inhibition for acute myocardial I/R injury by maintaining cardiac mitochondrial function.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.freeradbiomed.2016.05.006DOI Listing

Publication Analysis

Top Keywords

i/r injury
24
mir-22 inhibitor
24
mitochondrial function
16
mir-22
14
cardiac mitochondrial
12
mitochondrial
11
injury
10
mitochondrial oxidative
8
h9c2 cardiomyocytes
8
inhibitor attenuated
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!