Selective Sphingosine-1-Phosphate Receptor 1 Modulation Attenuates Experimental Intracerebral Hemorrhage.

Stroke

From the Departments of Neurology (N.S., Y.S., K.S., Y.F., J.H., Q.L., F.-D.S.) and Radiology (W.H.), Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China; Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ (N.S., K.W., Q.L., F.-D.S.); Department of Neurology, Yale University School of Medicine, New Haven, CT (K.N.S.); and Department of Clinical Research and Multiple Sclerosis Center, Neurology and Neuroscience Associates, Unity Health Network, Akron, OH (D.H.).

Published: July 2016

Background And Purpose: Preclinical studies and a proof-of-concept clinical study have shown that sphingosine-1-phosphate receptor (S1PR) modulator, fingolimod, improves the clinical outcome of intracerebral hemorrhage (ICH). However, the specific subtype of the S1PRs through which immune modulation provides protection in ICH remains unclear. In addition, fingolimod-induced adverse effects could limit its use in patients with stroke because of interactions with other S1PR subtypes, particularly with S1PR3. RP101075 is a selective S1PR1 agonist with superior cardiovascular safety profile. In this study, we investigated the impact of RP101075 treatment in a mouse model of ICH.

Methods: ICH was induced by injection of autologous blood in 294 male C57BL/6J and Rag2(-/-) mice. ICH mice randomly received vehicle, RP101075, or RP101075 plus S1PR1 antagonist W146 by daily oral gavage for three consecutive days, starting from 30 minutes after surgery. Neurodeficits, brain edema, brain infiltration of immune cells, blood-brain barrier integrity, and cell death were assessed after ICH.

Results: RP101075 significantly attenuated neurological deficits and reduced brain edema in ICH mice. W146 blocked the effects of RP101075 on neurodeficits and brain edema. RP101075 reduced the counts of brain-infiltrating lymphocytes, neutrophils, and microglia, as well as cytokine expression after ICH. Enhanced blood-brain barrier integrity and alleviated neuronal death were also seen in ICH mice after RP101075 treatment.

Conclusions: S1PR1 modulation via RP101075 provides protection in experimental ICH. Together with the advantageous pharmacological features of RP101075, these results warrant further investigations of its mechanisms of action and translational values in ICH patients.

Download full-text PDF

Source
http://dx.doi.org/10.1161/STROKEAHA.115.012236DOI Listing

Publication Analysis

Top Keywords

ich mice
12
brain edema
12
rp101075
10
ich
9
sphingosine-1-phosphate receptor
8
intracerebral hemorrhage
8
neurodeficits brain
8
blood-brain barrier
8
barrier integrity
8
selective sphingosine-1-phosphate
4

Similar Publications

Major depressive disorder (MDD) is a common mood condition affecting multiple brain regions and cell types. Changes in astrocyte function contribute to depressive-like behaviors. However, while neuronal mechanisms driving MDD have been studied in some detail, molecular mechanisms by which astrocytes promote depression have not been extensively explored.

View Article and Find Full Text PDF

Rho-associated protein kinase (ROCK) inhibitors are therapeutic candidates in ischemic stroke and subarachnoid hemorrhage. However, their efficacy in intracerebral hemorrhage (ICH) is unknown. Here, we tested the efficacy of fasudil (10 mg/kg), an isoform-nonselective ROCK inhibitor, and NRL-1049 (10 mg/kg), a novel inhibitor with 43-fold higher selectivity for ROCK2 isoform compared with ROCK1, in a collagenase-induced ICH model in mice.

View Article and Find Full Text PDF

Background: Intracerebral hemorrhage (ICH) causes prominent deposition of extracellular matrix molecules, particularly the chondroitin sulphate proteoglycan (CSPG) member neurocan. In tissue culture, neurocan impedes the properties of oligodendrocytes. Whether therapeutic reduction of neurocan promotes oligodendrogenesis and functional recovery in ICH is unknown.

View Article and Find Full Text PDF

Inhibition of Bruton's tyrosine kinase restricts neuroinflammation following intracerebral hemorrhage.

Theranostics

January 2025

Department of Neurology, Tianjin Neurological Institute, Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, International Joint Laboratory of Ocular Diseases, Ministry of Education, Haihe Laboratory of Cell Ecosystem, Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of Education, Tianjin Medical University General Hospital, Tianjin 300052, China.

Intracerebral hemorrhage (ICH) is a devastating form of stroke with a lack of effective treatments. Following disease onset, ICH activates microglia and recruits peripheral leukocytes into the perihematomal region to amplify neural injury. Bruton's tyrosine kinase (BTK) controls the proliferation and survival of various myeloid cells and lymphocytes.

View Article and Find Full Text PDF

Heme oxygenase 1 (HO-1), an enzyme involved in heme catabolism, has been shown upregulated in microglia cells and plays a critical roles in neurological damages after intracerebral hemorrhage (ICH). However, the mechanisms by which HO-1 mediates the neuronal damages are still obscure. Here, our findings demonstrate that HO-1 over-expression exacerbates the pro-inflammatory response of microglia and induces neuronal ferroptosis through promoting intracellular iron deposition in the ICH model both in vitro and in vivo.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!