Despite increasing application of the pre-grafting expansion during autologous fat transplantation in breast reconstruction, little is known about its mechanism of action. To address that, ventral skins of miniature pigs were treated over a 10-day or 21-day period, with continuous suction at -50 mm Hg via a 7-cm diameter rubber-lined suction-cup device. Soft tissue thickness increased immediately after this external volume expansion (EVE) treatment, such increase completely disappeared by the next day. In the dermis and subcutaneous fat, the EVE treated groups showed significant increases in blood vessel density evident by CD31 staining as well as in vascular networks layered with smooth muscle cells when compared with the control group. This finding was corroborated by the increased percentage of endothelial cells present in the treatment groups. There was no significant difference in the percentages of proliferating basal keratinocytes or adipocytes, nor in epidermal thickness. Moreover, the EVE had no effect on proliferation or differentiation potential of adipose stem cells. Taken together, the major effects of EVE appeared to be vascular remodeling and maturation of functional blood vessels. This understanding may help clinicians optimize the vascularity of the recipient bed to further improve fat graft survival.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4865724PMC
http://dx.doi.org/10.1038/srep25865DOI Listing

Publication Analysis

Top Keywords

external volume
8
volume expansion
8
expansion modulates
4
modulates vascular
4
vascular growth
4
growth functional
4
functional maturation
4
maturation swine
4
swine model
4
model despite
4

Similar Publications

Background Detection and segmentation of lung tumors on CT scans are critical for monitoring cancer progression, evaluating treatment responses, and planning radiation therapy; however, manual delineation is labor-intensive and subject to physician variability. Purpose To develop and evaluate an ensemble deep learning model for automating identification and segmentation of lung tumors on CT scans. Materials and Methods A retrospective study was conducted between July 2019 and November 2024 using a large dataset of CT simulation scans and clinical lung tumor segmentations from radiotherapy plans.

View Article and Find Full Text PDF

Total Knee Arthroplasty Automated Implant Detector: An Uncertainty-Aware Deep Learning Classifier to Identify Total Knee Arthroplasty Implants.

J Arthroplasty

January 2025

Orthopedic Surgery Artificial Intelligence Laboratory, Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA; Mayo Clinic Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA. Electronic address:

Background: A drastic increase in the volume of primary total knee arthroplasties (TKAs) performed nationwide will inevitably lead to higher volumes of revision TKAs in which the primary knee implant must be removed. An important step in preoperative planning for revision TKA is implant identification, which is time-consuming and difficult even for experienced surgeons. We sought to develop a deep learning algorithm to automatically identify the most common models of primary TKA implants.

View Article and Find Full Text PDF

Introduction: The tympanic cavity contains three tiny bones, the malleus, incus, and stapes, which have a fundamental role in the transmission of sound. Recent research emphasizes the use of CBCT for the anatomic study of the temporal bone. The information about middle ear anatomy on CBCT scans is meager; hence, this retrospective study was conducted to identify and determine the various morphometrical parameters of the malleus using CBCT which can be helpful during reconstructive procedures for the otologic surgeon.

View Article and Find Full Text PDF

Flexible Neuromorphic Electronics for Wearable Near-Sensor and In-Sensor Computing Systems.

Adv Mater

January 2025

School of Electrical and Computer Engineering, Center for Smart Sensor System of Seoul (CS4), University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul, 02504, Republic of Korea.

Flexible neuromorphic architectures that emulate biological cognitive systems hold great promise for smart wearable electronics. To realize neuro-inspired sensing and computing electronics, artificial sensory neurons that detect and process external stimuli must be integrated with central nervous systems capable of parallel computation. In near-sensor computing, synaptic devices, and sensors are used to emulate sensory neurons and receptors, respectively.

View Article and Find Full Text PDF

Exercise Training Enhances Brachial Artery Endothelial Function, Possibly via Improved HDL-C, not LDL-C and TG, in Patients with Coronary Artery Disease: A Systematic Review and Meta-analysis.

Am J Cardiovasc Drugs

January 2025

Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, 3875 Holman St., Houston, TX, 77204-6015, USA.

Background: It remains controversial whether exercise training (EX) improves vascular endothelial function (VEF) independent of lipoprotein changes even though these are therapeutic goals for coronary artery disease (CAD).

Objective: The purpose of this study was to systematically review the effects of EX on VEF and blood lipid variables in patients with CAD.

Methods: This study adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!