Empirical evidence strongly indicates that human exploitation has frequently led to rapid evolutionary changes in wild populations, yet the mechanisms involved are often poorly understood. Here, we applied a recently developed demographic framework for analyzing selection to data from a 20-year study of a wild population of moose, Alces alces. In this population, a genetic pedigree has been established all the way back to founders. We demonstrate harvest-induced directional selection for delayed birth dates in males and reduced body mass as calf in females. During the study period, birth date was delayed by 0.81 days per year for both sexes, whereas no significant changes occurred in calf body mass. Quantitative genetic analyses indicated that both traits harbored significant additive genetic variance. These results show that selective harvesting can induce strong selection that oppose natural selection. This may cause evolution of less favorable phenotypes that become maladaptive once harvesting ceases.

Download full-text PDF

Source
http://dx.doi.org/10.1111/evo.12952DOI Listing

Publication Analysis

Top Keywords

population moose
8
moose alces
8
alces alces
8
body mass
8
selection
5
harvest-induced phenotypic
4
phenotypic selection
4
selection island
4
island population
4
alces
4

Similar Publications

Toll-like receptors (TLRs) are crucial components of innate immunity. A specific form of genetic variation in TLR genes may increase the chance of developing leukemia. The present investigation conducted a comprehensive meta-analysis to examine the correlation between three TLR polymorphisms, namely TLR2 (rs3804099), TLR4 (rs4986790), and TLR9 (rs187084), within the leukemia risk group.

View Article and Find Full Text PDF

Data on the health impact of carbapenem-resistant bloodstream infections (CRE-BSIs) in pediatric populations from Latin America and the Caribbean (LAC) are limited. This systematic review aims to examine the demographic, clinical, and microbiological aspects and resource utilization of this infection in children from this region. This systematic review investigates the impact of CRE-BSIs in pediatric populations across LAC.

View Article and Find Full Text PDF

The non-indigenous dung beetle () can effectively reproduce using the dung of indigenous eastern North American mammals.

PeerJ

January 2025

Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, Canada.

Non-indigenous dung beetle (Coleoptera: Scarabaeoidea) species in North America are important contributors to ecosystem functions, particularly in pasture-based livestock systems. Despite the significant body of research surrounding non-indigenous (and often invasive) dung beetles in agricultural contexts, there has been minimal study concerning the impact that these species may have on indigenous dung beetle populations in natural environments. Here we examine the possible impact of the introduced dung beetle on indigenous dung beetle populations via use of indigenous mammal dung.

View Article and Find Full Text PDF

Background: The World Health Organization indicates that despite advancements, the rates of maternal and neonatal mortality and morbidity during the postpartum period continue to be alarmingly high. Furthermore, untapped opportunities to enhance maternal health and promote effective newborn care, including family planning services, have not been fully leveraged. Earlier meta-analyses and systematic reviews have addressed this subject; however, a thorough evidence synthesis has not been provided.

View Article and Find Full Text PDF

Background: As individuals age, the risk of cardiovascular disease (CVD) increases, largely due to progressive stiffening of the arteries. This relationship underscores the critical need to monitor arterial stiffness as a predictor of CVD outcomes. While aerobic exercise has demonstrated benefits for vascular health, the influence of flexibility, particularly trunk flexibility, on arterial stiffness remains underexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!