During the last decades, several studies have proposed manganese (Mn) complexes as alternative contrast agents for magnetic resonance imaging (MRI). With the nanotechnology surge in recent years, different types of Mn-based nanoparticles (Nps) have been developed. However, to design effective and safe administration procedures, preliminary studies on target cells, aimed at verifying their full biocompatibility and biodegradability, are mandatory. In this study, MnO containing-Nps encapsulated in a phospholipidic shell (PL-MnO Nps) were tested in cultured cells and flow cytometry; confocal and transmission electron microscopy were combined to understand the Nps uptake mechanism, intracellular distribution and degradation pathways, as well as possible organelle alterations. The results demonstrated that PL-MnO Nps undergo rapid and massive cell internalization, and persist free in the cytoplasm before undergoing lysosomal degradation without being cytotoxic or inducing subcellular damage. Based on the results with this cell model in vitro, PL-MnO Nps thus proved to be suitably biocompatible, and may be envisaged as very promising tools for therapeutic and diagnostic applications, as drug carriers or contrast agent for MRI.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpharm.2016.05.019 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!