Ultra-High Pressure Homogenization improves oxidative stability and interfacial properties of soy protein isolate-stabilized emulsions.

Food Chem

Centre Especial de Recerca Planta de Tecnologia dels Aliments (CERPTA), XaRTA, TECNIO, MALTA-Consolider, Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Spain. Electronic address:

Published: October 2016

Ultra-High Pressure Homogenization (100-300MPa) has great potential for technological, microbiological and nutritional aspects of fluid processing. Its effect on the oxidative stability and interfacial properties of oil-in-water emulsions prepared with 4% (w/v) of soy protein isolate and soybean oil (10 and 20%, v/v) were studied and compared to emulsions treated by conventional homogenization (15MPa). Emulsions were characterized by particle size, emulsifying activity index, surface protein concentration at the interface and by transmission electron microscopy. Primary and secondary lipid oxidation products were evaluated in emulsions upon storage. Emulsions with 20% oil treated at 100 and 200MPa exhibited the most oxidative stability due to higher amount of oil and protein surface load at the interface. This manuscript addresses the improvement in oxidative stability in emulsions treated by UHPH when compared to conventional emulsions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2016.04.019DOI Listing

Publication Analysis

Top Keywords

oxidative stability
16
ultra-high pressure
8
pressure homogenization
8
stability interfacial
8
interfacial properties
8
soy protein
8
emulsions
8
emulsions treated
8
homogenization improves
4
oxidative
4

Similar Publications

Freezing extends the shelf life of foods but often leads to structural damage due to ice crystal formation, negatively impacting quality attributes. Oscillating magnetic field (OMF)-assisted supercooling has emerged as a potential technique to overcome these limitations by inhibiting ice nucleation and maintaining foods in a supercooled state. Despite its potential, the effectiveness and underlying mechanisms of OMF-assisted supercooling remain subjects of debate.

View Article and Find Full Text PDF

Background: Glucagon-like peptide-1 (GLP-1) is a crucial incretin hormone secreted by intestinal endocrine L cells. Given its pivotal physiological role, researchers have developed GLP-1 receptor agonists (GLP-1 RAs) through structural modifications. These analogues display pharmacological effects similar to those of GLP-1 but with augmented stability and are regarded as an effective means of regulating blood glucose levels in clinical practice.

View Article and Find Full Text PDF

This study introduces a method for synthesizing electrically conductive hydrogels by incorporating a self-assembled, percolating graphene network. Our approach differs from previous approaches in two crucial aspects: using pristine graphene rather than graphene oxide and self-assembling the percolation network rather than creating random networks by blending. We use pristine graphene at an oil-water interface to stabilize a water-in-oil emulsion, successfully creating hydrogel foams with conductivities up to 15 mS m and tunable porosity.

View Article and Find Full Text PDF

Modification at ITO/NiO Interface with MoS Enables Hole Transport for Efficient and Stable Inverted Perovskite Solar Cells.

ChemSusChem

January 2025

Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P.R. China.

Inverted perovskite solar cells (IPSCs) utilizing nickel oxide (NiO) as hole transport material have made great progress, driven by improvements in materials and interface engineering. However, challenges remain due to the low intrinsic conductivity of NiO and inefficient hole transport. In this study, we introduced MoS nanoparticles at the indium tin oxide (ITO) /NiO interface to enhance the ITO surface and optimize the deposition of NiO, resulting in increased conductivity linked to a ratio of Ni:Ni.

View Article and Find Full Text PDF

Semiconductor metal oxide (SMO) gas sensors are gaining prominence owing to their high sensitivity, rapid response, and cost-effectiveness. These sensors detect changes in resistance resulting from oxidation-reduction reactions with target gases, responding to a variety of gases simultaneously. However, their inherent limitations lie in selectivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!