Recently, point of care testing (POCT) used for diagnosis of influenza infection has a problem showing false negative diagnosis because of the low sensitivity. We would like to report detection of influenza virus A (H1N1) by an immunosensor based on electrochemiluminescence (ECL) that uses an immunoliposome encapsulating tris(2,2'-bipyridyl)ruthenium(II) complex. By using the sensor, we could detect the virus that competed with hemagglutinin (HA) peptide immobilized on self-assembled monolayers (SAMs) in immunoreaction of the antibody bound on the surface of liposome. The HA peptide was 19 mer (TGLRNGITNKVNSVIEKAA). We demonstrated great improvement of sensitivity and accuracy by introducing binary SAMs instead of mono SAMs. The binary SAMs was prepared from 3,3'-dithiodipropionic acid and 1-hexanethiol. Use of the binary SAMs enabled to increase the SAMs coverage on Au electrode; the fact was confirmed by observation of the cathodic desorption currents. By using such an electrode, first the detection method of BSA was optimized to lower ECL background signal. Then we applied the method to the detection of influenza virus. We could successfully detect the virus with higher sensitivity compared with that by POCT and ELISA. The detection range was from a concentration of 2.7 × 10(2) to 2.7 × 10(3) PFU/mL.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00216-016-9587-8DOI Listing

Publication Analysis

Top Keywords

binary sams
16
detection influenza
12
influenza virus
12
immunoliposome encapsulating
8
detect virus
8
sams
7
detection
5
virus
5
virus biosensor
4
biosensor based
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!