A total of 38 bioactive compounds, including glucosinolates, carotenoids, tocopherols, sterols, and policosanols, were characterized from nine varieties of Chinese cabbage (Brassica rapa L. subsp. pekinensis) to determine their phytochemical diversity and analyze their abundance relationships. The metabolite profiles were evaluated with principal component analysis (PCA), Pearson correlation analysis, and hierarchical clustering analysis (HCA). PCA and HCA identified two distinct varieties of Chinese cabbage (Cheonsangcheonha and Waldongcheonha) with higher levels of glucosinolates and carotenoids. Pairwise comparisons of the 38 metabolites were calculated using Pearson correlation coefficients. The HCA, which used the correlation coefficients, clustered metabolites that are derived from closely related biochemical pathways. Significant correlations were discovered between chlorophyll and carotenoids. Additionally, aliphatic glucosinolate and carotenoid levels were positively correlated. The Cheonsangcheonha and Waldongcheonha varieties appear to be good candidates for breeding because they have high glucosinolate and carotenoid levels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jafc.6b01323 | DOI Listing |
Gels
December 2024
College of Resources and Environment Sciences, Gansu Agricultural University, Lanzhou 730070, China.
Under the increasing severity of drought issues and the urgent need for the resourceful utilization of agricultural waste, this study aimed to compare the soil water retention properties of hydrogels prepared from Chinese cabbage waste (CW) and banana peel (BP) using grafting techniques with acrylic acid (AA) and acrylamide (AAm). Free radical polymerization was initiated with ammonium persulfate (APS), and N, N'-methylene bisacrylamide (MBA) served as the crosslinking agent to fabricate the grafted polymer hydrogels. The hydrogels were subjected to detailed evaluations of their water absorption, reusability, and water retention capabilities through indoor experiments.
View Article and Find Full Text PDFYing Yong Sheng Tai Xue Bao
October 2024
School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China.
Petroleum hydrocarbon pollutants in soil are challenging to biodegrade, negatively impacting plant growth as well as the metabolic activity and community structure of soil microorganisms. Microorganisms immobilized by seed carriers can synergistically contribute to the remediation of petroleum hydrocarbon-contaminated soil. We prepared a rape seed carrier with immobilized microorganism by seed coating (with a mixture of diatomaceous earth and bentonite as fillers) and microbial immobilization.
View Article and Find Full Text PDFPest Manag Sci
December 2024
Postdoctoral Mobile Station of Biology, Genetic Engineering Research Center, College of Life Sciences, Chongqing University, Chongqing, China.
Background: Discovering insecticidal proteins with high activity and strict insect specificity and applying them to the biological control of insect pests is of great significance. Oral LqhIT2 has insecticidal activity, which most other insecticidal neurotoxin proteins do not have, but the large-scale preparation of the toxin is difficult and one of the obstacles to determining its anti-insect potential for biological control.
Results: In this study, the expression level of recombinant LqhIT2 (rLqhIT2) in Pichia pastoris was as high as 1.
BMC Plant Biol
December 2024
The Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430000, China.
Background: The three-amino-acid-loop-extension (TALE) superfamily genes are broadly present in plants and play important roles in plant growth, development, and abiotic stress responses. So far, the TALE family in B.napus have not been systematically studied, especially their potential roles in response to abiotic stress.
View Article and Find Full Text PDFMol Breed
December 2024
Yazhouwan National Laboratory, Sanya, 572025 Hainan China.
, a globally significant oilseed crop, exhibits a wide distribution across diverse climatic zones. is being increasingly susceptible to distinct diseases, such as blackleg, clubroot and sclerotinia stem rot, leading to substantial reductions in yield. Nucleotide-binding site leucine-rich repeat genes (), the most pivotal family of resistance genes, can be effectively harnessed by identifying and uncovering their diversity to acquire premium disease-resistant gene resources.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!