Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Over the Tibetan Plateau and adjacent regions, numerous (14)C-based lake records revealed a ubiquitous wet climatic period during 40-25 ka (late MIS 3), which is in contradiction with the global pattern of generally cold and dry climates. This paper focuses on OSL dating results of a large set of sand dunes and alluvial sediments (50 OSL ages) from the Qinwangchuan (QWC) Basin at the northeast edge of the Tibetan Plateau, with the aim to test the validity of the anomalous wet condition for the late MIS 3 interval, evidenced by numerous lake highstands. The abrupt sand dune accumulation as indication of increased aridity in the study area was OSL dated to ~40-13 ka. This dry climatic inference of the sand dune system from QWC apparently shows no wet MIS 3a event. Thus, the anomalous wet conditions revealed by high lake levels for the late MIS 3 phase may not be a universal phenomena across entire western China.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4865950 | PMC |
http://dx.doi.org/10.1038/srep25820 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!