Programmed cell death occurs naturally at different stages of neural development, including neurogenesis. The functional role of this early phase of neural cell death, which affects recently differentiated neurons among other cell types, remains undefined. Some mouse models defective in DNA double-strand break (DSB) repair present massive cell death during neural development, occasionally provoking embryonic lethality, while other organs and tissues remain unaffected. This suggests that DSBs occur frequently and selectively in the developing nervous system. We analyzed the embryonic retina of a mouse model deficient in the error-prone DNA polymerase μ (Polμ), a key component of the non-homologous end-joining (NHEJ) repair system. DNA DSBs were increased in the mutant mouse at embryonic day 13.5 (E13.5), as well as the incidence of cell death that affected young neurons, including retinal ganglion cells (RGCs). Polμ(-/-) mice also showed disturbed RGC axonal growth and navigation, and altered distribution of the axonal guidance molecules L1-CAM and Bravo (also known as Nr-CAM). These findings demonstrate that Polμ is necessary for proper retinal development, and support that the generation of DSBs and their repair via the NHEJ pathway are genuine processes involved in neural development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4865816 | PMC |
http://dx.doi.org/10.1038/srep25928 | DOI Listing |
Cancer Cell Int
January 2025
Department of Toxicology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran.
Background: Cancer remains a leading cause of death worldwide. Environmental factors, specifically endocrine-disrupting chemicals (EDCs), like phthalates, are increasingly being linked to cancer development. Phthalates, widely used in consumer products, can activate the aryl hydrocarbon receptor (AhR).
View Article and Find Full Text PDFJ Neuroinflammation
January 2025
Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA.
Background: The retinal degenerative diseases retinitis pigmentosa (RP) and atrophic age- related macular degeneration (AMD) are characterized by vision loss from photoreceptor (PR) degeneration. Unfortunately, current treatments for these diseases are limited at best. Genetic and other preclinical evidence suggest a relationship between retinal degeneration and inflammation.
View Article and Find Full Text PDFJ Transl Med
January 2025
Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
Background: Tumor microenvironment (TME), particularly immune cell infiltration, programmed cell death (PCD) and stress, has increasingly become a focal point in colorectal cancer (CRC) treatment. Uncovering the intricate crosstalk between these factors can enhance our understanding of CRC, guide therapeutic strategies, and improve patient prognosis.
Methods: We constructed an immune-related cell death and stress (ICDS) prognostic model utilizing machine learning methodologies.
J Transl Med
January 2025
Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang, China.
In patients with acute myocardial infarction (AMI), thrombolytic therapy and revascularization strategies allow complete recanalization of occluded epicardial coronary arteries. However, approximately 35% of patients still experience myocardial ischemia/reperfusion (I/R) injury, which contributing to increased AMI mortality. Therefore, an accurate understanding of myocardial I/R injury is important for preventing and treating AMI.
View Article and Find Full Text PDFBMC Neurosci
January 2025
Department of Operative Dentistry and Periodontology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany.
Background: Parkinson's disease (PD) is a neurodegenerative disorder characterized by protein aggregates mostly consisting of misfolded alpha-synuclein (αSyn). Progressive degeneration of midbrain dopaminergic neurons (mDANs) and nigrostriatal projections results in severe motor symptoms. While the preferential loss of mDANs has not been fully understood yet, the cell type-specific vulnerability has been linked to a unique intracellular milieu, influenced by dopamine metabolism, high demand for mitochondrial activity, and increased level of oxidative stress (OS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!