Programmed cell death is a basic cellular mechanism. Apoptotic-like programmed cell death (called apoptosis in animals) occurs in both unicellular and multicellular eukaryotes, and some apoptotic mechanisms are observed in bacteria. Endosymbiosis between mitochondria and eukaryotic cells took place early in the eukaryotic evolution, and some of the apoptotic-like mechanisms of mitochondria that were retained after this event now serve as parts of the eukaryotic apoptotic machinery. Apoptotic mechanisms have several functions in unicellular organisms: they include kin-selected altruistic suicide that controls population size, sharing common goods, and responding to viral infection. Apoptotic factors also have non-apoptotic functions. Apoptosis is involved in the cellular aging of eukaryotes, including humans. In addition, apoptosis is a key part of the innate tumor-suppression mechanism. Several anticancer drugs induce apoptosis, because apoptotic mechanisms are inactivated during oncogenesis. Because of the ancient history of apoptosis, I hypothesize that there is a deep relationship between mitochondrial metabolism, its role in aerobic versus anaerobic respiration, and the connection between apoptosis and cancer. Whereas normal cells rely primarily on oxidative mitochondrial respiration, most cancer cells use anaerobic metabolism. According to the Warburg hypothesis, the remodeling of the metabolism is one of the processes that leads to cancer. Recent studies indicate that anaerobic, non-mitochondrial respiration is particularly active in embryonic cells, stem cells, and aggressive stem-like cancer cells. Mitochondrial respiration is particularly active during the pathological aging of human cells in neurodegenerative diseases. According to the reversed Warburg hypothesis formulated by Demetrius, pathological aging is induced by mitochondrial respiration. Here, I advance the hypothesis that the stimulation of mitochondrial metabolism leads to pathological aging.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1478-3975/13/3/031001 | DOI Listing |
Int J Biol Macromol
January 2025
Department of Urology, Affiliated Hospital of Youjiang Medical University for Nationalities and Key Laboratory of Molecular Pathology in Tumors of Baise, Baise 533000, China. Electronic address:
The primary objective of this study was to conduct a comprehensive analysis of the mechanism by which TCF7 recombinant protein operates, as well as to examine its expression patterns within bladder cancer cells. This research seeks to establish a new theoretical framework and provide experimental data that could advance the field of molecular targeted therapy for bladder cancer. Erlotinib, a well-known targeted therapy drug, was administered to the bladder cancer cells, and we evaluated its antitumor effects through various assays such as cell proliferation, apoptosis, and cell cycle analysis.
View Article and Find Full Text PDFFood Chem
January 2025
Lab of Meat Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China. Electronic address:
This study investigated the effect of the inhibition of the activity of Ca-independent Phospholipase A (iPLA) of Peroxiredoxin 6 (Prdx6) on beef tenderization in the early post-mortem period. Longissimus lumborum (LL) were incubated with or without the inhibitor of iPLA activity of Prdx6 (MJ33) for 1, 6, 12, 24, or 36 h, followed by incubation with or without the HO. iPLA activity, troponin T and desmin, Ca concentration, calpain-1, caspases, apoptosis rate, and cell morphology were examined.
View Article and Find Full Text PDFPLoS One
January 2025
Precision Laboratory of Vascular Medicine, Shanxi Cardiovascular Hospital Affiliated Shanxi Medical University, Taiyuan, PR China.
Background: Myocardial ischemia-reperfusion injury (MIRI) is an important complication in the treatment of heart failure, and its treatment has not made satisfactory progress. Nitroxyl (HNO) showed protective effects on the heart failure, however, the effect and underlying mechanism of HNO on MIRI remain largely unclear.
Methods: MIRI model in this study was established to induce H9C2 cell injury through hypoxia/reoxygenation (H/R) in vitro.
Naunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, 45142, Jazan, Saudi Arabia.
Cypermethrin is a pyrethroid showing nephrotoxicity by generating ROS-impaired oxidative stress and changes in inflammatory and apoptotic markers. The harmful consequences are intended to be mitigated by the imbalance between oxidants and antioxidants. The anti-inflammatory and antioxidant possessions of nanocurcumin (NC) with improved bioavailability ameliorate Cyp toxicity in rat kidneys.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
Background: Breast carcinoma stands out as the most widespread invasive cancer and the top contributor to cancer-related mortality in women. Nanoparticles have emerged as promising tools in cancer detection, diagnosis, and prevention. In this study, the antitumor and apoptotic capability of silver nanoparticles synthesized through Scrophularia striata extract (AgNPs-SSE) was investigated toward breast cancer cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!