A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Structural Control of Nonadiabatic Photochemical Bond Formation: Photocyclization in Structurally Modified ortho-Terphenyls. | LitMetric

Understanding how molecular structure impacts the shapes of potential energy surfaces and prospects for nonadiabatic photochemical dynamics is critical for predicting and controlling the chemistry of molecular excited states. Ultrafast transient absorption spectroscopy was used to interrogate photoinduced, nonadiabatic 6π cyclization of a collection of ortho-terphenyls (OTP) modified with alkyl substituents of different sizes and electron-donating/withdrawing character positioned on its central and pendant phenyl rings. OTP alkylated at the 4,4″ and 4',5' positions of the pendant and central rings, respectively, exhibiting biphasic excited-state relaxation; this is qualitatively similar to relaxation of OTP itself, including a fast decrease in excited-state absorption (τ1 = 1-4 ps) followed by formation of metastable cyclized photoproducts (τ2 = 3-47 ps) that share common characteristic spectroscopic features for all substitutions despite variations in chemical nature of the substituents. By contrast, anomalous excited-state dynamics are observed for 3',6'dimethyl-OTP, in which the methyl substituents crowd the pendant rings sterically; time-resolved spectral dynamics and low photochemical reactivity with iodine reveal that methylation proximal to the pendant rings impedes nonadiabatic cyclization. Results from transient measurements and quantum-chemical calculations are used to decipher the nature of excited state relaxation mechanisms in these systems and how they are perturbed by mechanical, electronic, and steric interactions induced by substituents.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpca.6b02925DOI Listing

Publication Analysis

Top Keywords

nonadiabatic photochemical
8
pendant rings
8
structural control
4
nonadiabatic
4
control nonadiabatic
4
photochemical bond
4
bond formation
4
formation photocyclization
4
photocyclization structurally
4
structurally modified
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!