ArnA from Escherichia coli is a key enzyme involved in the formation of 4-amino-4-deoxy-l-arabinose. The addition of this sugar to the lipid A moiety of the lipopolysaccharide of pathogenic Gram-negative bacteria allows these organisms to evade the cationic antimicrobial peptides of the host immune system. Indeed, it is thought that such modifications may be responsible for the repeated infections of cystic fibrosis patients with Pseudomonas aeruginosa. ArnA is a bifunctional enzyme with the N- and C-terminal domains catalyzing formylation and oxidative decarboxylation reactions, respectively. The catalytically competent cofactor for the formylation reaction is N(10) -formyltetrahydrofolate. Here we describe the structure of the isolated N-terminal domain of ArnA in complex with its UDP-sugar substrate and N(5) -formyltetrahydrofolate. The model presented herein may prove valuable in the development of new antimicrobial therapeutics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4972212PMC
http://dx.doi.org/10.1002/pro.2938DOI Listing

Publication Analysis

Top Keywords

escherichia coli
8
structure escherichia
4
arna
4
coli arna
4
arna n-formyltransferase
4
n-formyltransferase domain
4
domain complex
4
complex -formyltetrahydrofolate
4
-formyltetrahydrofolate udp-ara4n
4
udp-ara4n arna
4

Similar Publications

Genes encoding OXA-48-like carbapenem-hydrolyzing enzymes are often located on plasmids and are abundant among carbapenemase-producing (CPE) worldwide. After a large plasmid-mediated outbreak in 2011, routine screening of patients at risk of CPE carriage on admission and every 7 days during hospitalization was implemented in a large hospital in the Netherlands. The objective of this study was to investigate the dynamics of the hospitals' 2011 outbreak-associated plasmid among CPE collected from 2011 to 2021.

View Article and Find Full Text PDF

Epidemiology of Shiga toxin-producing other than serotype O157:H7 in England, 2016-2023.

J Med Microbiol

January 2025

Field Service - South East and London, UK Health Security Agency, London, UK.

Shiga toxin-producing (STEC) infections are of public health concern as STEC can cause large national foodborne outbreaks of severe gastrointestinal disease, particularly in the young and elderly. In recent years, the implementation of PCR by diagnostic microbiology laboratories has improved the detection of STEC, and there has been an increase in notifications of cases of non-O157 STEC. However, the extent this increase in caseload can be attributed to the improved detection by PCR, or a true increase in non-O157 STEC infections, is unknown.

View Article and Find Full Text PDF

Unlabelled: causes bacterial cold-water disease (BCWD) in salmonids and other fish, resulting in substantial economic losses in aquaculture worldwide. The mechanisms uses to cause disease are poorly understood. Despite considerable effort, most strains of have resisted attempts at genetic manipulation.

View Article and Find Full Text PDF

Caveolin-Mediated Endocytosis: Bacterial Pathogen Exploitation and Host-Pathogen Interaction.

Cells

December 2024

Molecular and Cellular Microbiology Laboratory, Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA.

Within mammalian cells, diverse endocytic mechanisms, including phagocytosis, pinocytosis, and receptor-mediated endocytosis, serve as gateways exploited by many bacterial pathogens and toxins. Among these, caveolae-mediated endocytosis is characterized by lipid-rich caveolae and dimeric caveolin proteins. Caveolae are specialized microdomains on cell surfaces that impact cell signaling.

View Article and Find Full Text PDF

Respiratory syncytial virus (RSV) is one of the most important etiologies of acute respiratory infections that cause bronchiolitis in children under 5 years of age. Treatments are expensive, no vaccine is available, and this is an important cause of hospitalization. Costimulatory molecules have been reported to be good inducers of antiviral type 1 immune response.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!