We present an integrated microfluidic system consisting of a label-free biosensor of a guided-mode resonance filter (GMRF) and a microfluidic channel with a micropost filter. The GMRF was fabricated through replica molding using an ultraviolet-curable polymer and a plastic substrate. An array of microposts (a diameter and height of 26.5 and 56 μm, respectively, and a spacing between 7.5 and 9.5 μm), fabricated on a silicon substrate through photolithography, was used as the filter. A double-sided tape was used to laminate the GMRF and a microfluidic chip such that the integrated device provides two functions: filtration of the cell debris and quantification of the in-cell protein concentration. By measuring the changes in the resonant wavelength from the GMRF, the detection of β-actin in an unprocessed lysed cell sample was demonstrated; the cell debris was separated using the micropost filter to prevent false measurement.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c6an00023a | DOI Listing |
ACS Photonics
December 2024
Graduate School and Faculty of Information Science and Electrical Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka, 819-0395, Japan.
Whispering-gallery mode (WGM) resonators, renowned for their high Q-factors and narrow line widths, are widely utilized in integrated photonics. Integrating diffraction gratings onto WGM cavities has gained significant attention because these gratings function as azimuthal refractive index modulators, enabling single-mode WGM emissions and supporting beams with orbital angular momentum (OAM). The introduction of curved grating structures facilitates guided mode resonances by coupling high-order diffracted waves with leaking modes from the waveguide.
View Article and Find Full Text PDFMolecules
November 2024
School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
Miniaturized spectrometers have significantly advanced real-time analytical capabilities in fields such as environmental monitoring, healthcare diagnostics, and industrial quality control by enabling precise on-site spectral analysis. However, achieving high sensitivity and spectral resolution within compact devices remains a significant challenge, particularly when detecting low-concentration analytes or subtle spectral variations critical for chemical and molecular analysis. This study introduces an innovative approach employing guided-mode resonance filters (GMRFs) to address these limitations.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Department of Electrical Engineering, Faculty of Engineering, University of Zabol, 9861335856 Zabol, Iran.
In this paper, we have investigated a hybrid metamaterial seven-layer solar absorber. The absorber has remarkable characteristics, including ultra-broadband perfect absorption capability, near-perfect absorption at wide angles, and insensitivity to polarization. The structure exhibits an average absorption of 98.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Institute of Automation and Electrometry of the SB RAS, 1 Acad. Koptyug Ave., 630090 Novosibirsk, Russia.
Modern photonic devices demand low-cost, scalable methods for creating periodic patterns over diverse surfaces including nonplanar and tipped ones, the examples of which can be readily found in fiber optics. Laser-induced periodic surface structures (LIPSS) offer an attractive route for fabricating such patterns in a single-step straightforward procedure, where the temporal and spatial locality of the self-interference effects ensure robustness against variations of the laser processing parameters. In this work, we show the LIPSS-assisted oxidation of thin titanium films by near-IR femtosecond laser pulses as a promising technology for the production of regular gratings consisting of rutile ridges.
View Article and Find Full Text PDFNanophotonics
August 2024
ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, ACT 2600, Australia.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!