We present an integrated microfluidic system consisting of a label-free biosensor of a guided-mode resonance filter (GMRF) and a microfluidic channel with a micropost filter. The GMRF was fabricated through replica molding using an ultraviolet-curable polymer and a plastic substrate. An array of microposts (a diameter and height of 26.5 and 56 μm, respectively, and a spacing between 7.5 and 9.5 μm), fabricated on a silicon substrate through photolithography, was used as the filter. A double-sided tape was used to laminate the GMRF and a microfluidic chip such that the integrated device provides two functions: filtration of the cell debris and quantification of the in-cell protein concentration. By measuring the changes in the resonant wavelength from the GMRF, the detection of β-actin in an unprocessed lysed cell sample was demonstrated; the cell debris was separated using the micropost filter to prevent false measurement.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c6an00023aDOI Listing

Publication Analysis

Top Keywords

guided-mode resonance
8
resonance filter
8
in-cell protein
8
filter gmrf
8
gmrf microfluidic
8
micropost filter
8
cell debris
8
filter
5
integration guided-mode
4
filter microposts
4

Similar Publications

Coexistence of the Radial-Guided Mode and WGM in Azimuthal-Grating-Integrated Microring Lasers.

ACS Photonics

December 2024

Graduate School and Faculty of Information Science and Electrical Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka, 819-0395, Japan.

Whispering-gallery mode (WGM) resonators, renowned for their high Q-factors and narrow line widths, are widely utilized in integrated photonics. Integrating diffraction gratings onto WGM cavities has gained significant attention because these gratings function as azimuthal refractive index modulators, enabling single-mode WGM emissions and supporting beams with orbital angular momentum (OAM). The introduction of curved grating structures facilitates guided mode resonances by coupling high-order diffracted waves with leaking modes from the waveguide.

View Article and Find Full Text PDF

Miniaturized spectrometers have significantly advanced real-time analytical capabilities in fields such as environmental monitoring, healthcare diagnostics, and industrial quality control by enabling precise on-site spectral analysis. However, achieving high sensitivity and spectral resolution within compact devices remains a significant challenge, particularly when detecting low-concentration analytes or subtle spectral variations critical for chemical and molecular analysis. This study introduces an innovative approach employing guided-mode resonance filters (GMRFs) to address these limitations.

View Article and Find Full Text PDF

Hybrid plasmonic metamaterials: towards enhanced ultra broadband and wide-angle solar absorption for energy harvesting.

Phys Chem Chem Phys

January 2025

Department of Electrical Engineering, Faculty of Engineering, University of Zabol, 9861335856 Zabol, Iran.

In this paper, we have investigated a hybrid metamaterial seven-layer solar absorber. The absorber has remarkable characteristics, including ultra-broadband perfect absorption capability, near-perfect absorption at wide angles, and insensitivity to polarization. The structure exhibits an average absorption of 98.

View Article and Find Full Text PDF

Modern photonic devices demand low-cost, scalable methods for creating periodic patterns over diverse surfaces including nonplanar and tipped ones, the examples of which can be readily found in fiber optics. Laser-induced periodic surface structures (LIPSS) offer an attractive route for fabricating such patterns in a single-step straightforward procedure, where the temporal and spatial locality of the self-interference effects ensure robustness against variations of the laser processing parameters. In this work, we show the LIPSS-assisted oxidation of thin titanium films by near-IR femtosecond laser pulses as a promising technology for the production of regular gratings consisting of rutile ridges.

View Article and Find Full Text PDF

Directionally tunable co- and counterpropagating photon pairs from a nonlinear metasurface.

Nanophotonics

August 2024

ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, ACT 2600, Australia.

Article Synopsis
  • * This study showcases the first-ever precise control of the emission angle for photon pairs generated in a nonlinear metasurface, achieving high-quality coincidence ratios in the emitted light.
  • * A silicon dioxide grating on a nonlinear lithium niobate layer was used to facilitate this control, and the findings suggest potential for further improvements through modulation techniques, enhancing the capabilities of photon-pair sources.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!