Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
An increasing number of studies have linked high dietary phosphate (Pi) intake to hypertension. It is well established that the rise in sympathetic nerve activity (SNA) and blood pressure (BP) during physical exertion is exaggerated in many forms of hypertension, which are primarily mediated by an overactive skeletal muscle exercise pressor reflex (EPR). However, it remains unknown whether high dietary Pi intake potentiates the EPR-mediated SNA and BP response to exercise. Accordingly, we measured renal SNA (RSNA) and mean BP (MBP) in normotensive Sprague-Dawley rats fed a normal Pi diet (0.6%, n = 13) or high Pi diet (1.2%, n = 13) for 3 mo. As previously reported, we found that resting BP was significantly increased by 1.2% Pi diet in both conscious and anesthetized animals. Activation of the EPR by electrically induced hindlimb contraction triggered greater increases in ΔRSNA and ΔMBP in the 1.2% compared with 0.6% Pi group (126 ± 25 vs. 42 ± 9%; 44 ± 5 vs. 14 ± 2 mmHg, respectively, P < 0.01). Activation of the muscle mechanoreflex, a component of the EPR, by passively stretching hindlimb muscle also evoked greater increases in ΔRSNA and ΔMBP in the 1.2% compared with 0.6% Pi group (109 ± 27 vs. 24 ± 7%, 38 ± 7 vs. 8 ± 2 mmHg, respectively, P < 0.01). A similar response was produced by hindlimb intra-arterial capsaicin administration to stimulate the metaboreflex arm of the EPR. Thus, our data demonstrate a novel action of dietary Pi loading in augmenting EPR function through overactivation of both the muscle mechanoreflex and metaboreflex.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4967233 | PMC |
http://dx.doi.org/10.1152/ajpregu.00124.2016 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!