Does moving up a food chain increase aggregation in parasites?

J R Soc Interface

School of Mathematics and Physics, University of Queensland, Brisbane, Queensland, Australia

Published: May 2016

General laws in ecological parasitology are scarce. Here, we evaluate data on numbers of fish parasites published by over 200 authors to determine whether acquiring parasites via prey is associated with an increase in parasite aggregation. Parasite species were grouped taxonomically to produce 20 or more data points per group as far as possible. Most parasites that remained at one trophic level were less aggregated than those that had passed up a food chain. We use a stochastic model to show that high parasite aggregation in predators can be solely the result of the accumulation of parasites in their prey. The model is further developed to show that a change in the predators feeding behaviour with age may further increase parasite aggregation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4892263PMC
http://dx.doi.org/10.1098/rsif.2016.0102DOI Listing

Publication Analysis

Top Keywords

parasite aggregation
12
food chain
8
parasites prey
8
increase parasite
8
moving food
4
chain increase
4
aggregation
4
increase aggregation
4
aggregation parasites?
4
parasites? general
4

Similar Publications

Meristematic and meristematic-like fungi in .

Fungal Syst Evol

December 2024

Laboratório de Micologia (LabMicol), Departamento de Biociências e Tecnologia (DEBIOTEC), Instituto de Patologia Tropical e Saúde Pública (IPTSP), Universidade Federal de Goiás (UFG), Rua 235, s/n, Setor Universitário, CEP: 74605-050, Goiânia, GO, Brazil.

Meristematic fungi are mainly defined as having aggregates of thick-walled, melanised cells enlarging and reproducing by isodiametric division. black meristematic and meristematic-like fungi have been allied to , which currently has two accepted families, and , with fungi mainly regarded as pathogens, parasites, saprobes and epiphytes of different plant species. This study aimed to verify the phylogenetic position using four nuclear markers (SSU, LSU, ITS and ) of the genera associated with , namely , , and , and the new genus, .

View Article and Find Full Text PDF

This study presents a novel series of -acylated 1,2,4-triazol-5-amines and 1-pyrazol-5-amines, featuring a pyrazin-2-yl moiety, developed as covalent inhibitors of thrombin. These compounds demonstrated potent inhibitory activity, with derivatives and achieving IC values as low as 0.7 and 0.

View Article and Find Full Text PDF

G protein-coupled purinergic P2Y receptors in infectious diseases.

Pharmacol Ther

January 2025

Laboratório de Neuroimunologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil. Electronic address:

The purinergic P2Y receptors comprise eight G-coupled receptor (GPCR) subtypes already identified (P2Y, P2Y, P2Y, P2Y, P2Y, P2Y). P2Y receptor physiological agonists are extracellular purine and pyrimidine nucleotides such as ATP (Adenosine triphosphate), ADP (Adenosine diphosphate), UTP (Uridine triphosphate), UDP (Uridine diphosphate), and UDP-glucose. These receptors are expressed in almost all cells.

View Article and Find Full Text PDF

Ixodid ticks are important disease vectors that significantly impact animal health and cause considerable economic losses, particularly in tropical and subtropical countries. The aim of the present study was to determine the identity, seasonal distribution, and preferred attachment sites of adult ixodid tick species of cattle in four municipalities (Aïn El Hadid, Sidi Bakhti, Mechraa Safa, and Sidi Hosni) of the Province of Tiaret (north-west Algeria) between May 2022 and May 2023. A total of 317 cattle were randomly selected and examined for tick infestation; 108 (34.

View Article and Find Full Text PDF

Scaling up to understand disease risk: distinct roles of host functional traits in shaping infection risk of avian malaria across different scales.

Proc Biol Sci

January 2025

MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, People's Republic of China.

Understanding the impacts of diversity on pathogen transmission is essential for public health and biological conservation. However, how the outcome and mechanisms of the diversity-disease relationship vary across biological scales in natural systems remains elusive. In addition, although the role of host functional traits has long been established in disease ecology, its integration into the diversity-disease relationship largely falls behind.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!