Numerous studies are revealing a role of exosomes in intercellular communication, and growing evidence indicates an important function for these vesicles in the progression and pathogenesis of cancer and neurodegenerative diseases. However, the biogenesis process of exosomes is still unclear. Tissue transglutaminase (TG2) is a multifunctional enzyme with different subcellular localizations. Particularly, under stressful conditions, the enzyme has been also detected in the extracellular matrix, but the mechanism(s) by which TG2 is released outside the cells requires further investigation. Therefore, the goal of the present study was to determine whether exosomes might be a vehicle for TG2 to reach the extracellular space, and whether TG2 could be involved in exosomes biogenesis. To address this issue, we isolated and characterized exosomes derived from cells either expressing or not TG2, under stressful conditions (i.e. proteasome impairment or expressing a mutated form of huntingtin (mHtt) containing 84 polyglutamine repeats). Our results show that TG2 is present in the exosomes only upon proteasome blockade, a condition in which TG2 interacts with TSG101 and ALIX, two key proteins involved in exosome biogenesis. Interestingly, we found that TG2 favours the assembly of a protein complex including mHtt, ALIX, TSG101 and BAG3, a co-chaperone involved in the clearance of mHtt. The formation of this complex is paralleled by the selective recruitment of mHtt and BAG3 in the exosomes derived from TG2 proficient cells only. Overall, our data indicate that TG2 is an important player in the biogenesis of exosomes controlling the selectivity of their cargo under stressful cellular conditions. In addition, these vesicles represent the way by which cells can release TG2 into the extracellular space under proteostasis impairment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbamcr.2016.05.005DOI Listing

Publication Analysis

Top Keywords

tg2
11
exosomes
9
selective recruitment
8
stressful cellular
8
cellular conditions
8
stressful conditions
8
extracellular space
8
exosomes derived
8
transglutaminase type
4
type 2-dependent
4

Similar Publications

Objective: Macrophages perform vital functions in cardiac remodeling after myocardial infarction (MI). Transglutaminase 2 (TG2) participates in fibrosis. Nevertheless, the role of TG2 in MI and mechanisms underlying macrophage polarization are unclear.

View Article and Find Full Text PDF

Molecular pathological characteristics and mechanisms of the liver in metabolic disease-susceptible transgenic pigs.

Life Sci

December 2024

State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China. Electronic address:

Aims: This study aimed to explore the molecular pathological mechanisms of the liver in metabolic disease-susceptible transgenic pigs via multiomics analysis.

Materials And Methods: The triple-transgenic (PNPLA3-GIPR-hIAPP) pig model (TG pig) was successfully constructed in our laboratory via the CRISPR/Cas9 technique previously described. Wild-type (WT) pigs and TG pigs after 2 or 12 months of high-fat and high-sucrose diet (HFHSD) induction (WT2, TG2, WT12, and TG12 groups, respectively) were used as materials.

View Article and Find Full Text PDF

Transglutaminase 2 (TG2) is a uniquely versatile protein with diverse catalytic activities, such as transglutaminase, protein disulfide isomerase, GTPase and protein kinase, and participates in several biological processes. According to information available in the RBP2GO database, TG2 can act as an RNA-binding protein (RBP). RBPs participate in posttranscriptional gene expression regulation, therefore influencing the function of RNA, whereas RNA molecules can also modulate the biological activity of RBPs.

View Article and Find Full Text PDF

Objectives: Concurrent type 1 diabetes (T1D) and celiac disease (CeD) pose challenges in insulin dosage adjustments and gluten-free dietary adherence. Urine testing for gluten immunogenic peptides (GIP) is a new method to detect gluten exposure within the last 3-12 h. Our aims were to compare gluten-free dietary adherence between T1D + CeD and CeD individuals and evaluate urinary GIP testing in an outpatient setting.

View Article and Find Full Text PDF

Diamino variants of piperazine-based tissue transglutaminase inhibitors.

Bioorg Med Chem Lett

December 2024

Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada. Electronic address:

Tissue transglutaminase (TG2) is a multifunctional protein that can catalyze the cross-linking between proteins, and function as a G-protein. TG2's unregulated behaviour has been associated with fibrosis, celiac disease and cancer metastasis. Recently, small molecule irreversible inhibitors have been designed, bearing an electrophilic warhead that can react with the catalytic cysteine, abolishing TG2's catalytic and G-protein capabilities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!