A CD 344 rat glioma model currently used to investigate boron neutron capture therapy (BNCT) was used to demonstrate an increased survival rate after thermal neutron irradiation enhanced by administration of 10B-enriched polyhedral borane, Na2B12H11SH. To investigate the possible effects of BNCT on normal and tumor microvasculature, we subjected animals to sublethal neutron irradiation with and without intravenous injection of 50 mg/kg of enriched 10B and performed histological and ultrastructural analyses. In the rats that did not undergo tumor transplantation, minimal detectable morphological changes in the microvasculature of the central nervous system were observed after treatment, both in the immediate posttreatment phase and at 10 months. Light microscopy of cerebral cortex and caudate nucleus showed normal cytoarchitecture with no evidence of vessel occlusion, hyalinization, thickening, or reactive gliosis. Electron microscopy demonstrated that the junctional complexes of the endothelial cells, the basal lamina, and the perivascular glia were comparable in both treated and control animals. In those animals examined at 18 months, pathological membrane-bound clusters of electron-dense vesicles were seen in pericytes. In the rats implanted with gliomas, vascular proliferation with evidence of breakdown of the blood-brain barrier and vasogenic edema occurred. In the irradiated animals, we noted increased peritumoral edema 3 days after treatment. At seven days, both increased peritumoral edema and necrosis were noted in the rats treated with BNCT. These observations show that the normal microvasculature of the central nervous system tolerates BNCT at the treatment parameters used in our experimental model; the progressive edema and necrosis found in the peritumoral region after BNCT indicate a pathological endothelial response.

Download full-text PDF

Source
http://dx.doi.org/10.1227/00006123-198905000-00007DOI Listing

Publication Analysis

Top Keywords

boron neutron
8
neutron capture
8
capture therapy
8
experimental model
8
neutron irradiation
8
microvasculature central
8
central nervous
8
nervous system
8
increased peritumoral
8
peritumoral edema
8

Similar Publications

Modeling inorganic glasses requires an accurate representation of interatomic interactions, large system sizes to allow for intermediate-range structural order, and slow quenching rates to eliminate kinetically trapped structural motifs. Neither first principles-based nor force field-based molecular dynamics (MD) simulations satisfy these three criteria unequivocally. Herein, we report the development of a machine learning potential (MLP) for a classic glass, B2O3, which meets these goals well.

View Article and Find Full Text PDF

Heterogeneous head phantom for validating treatment planning system in boron neutron capture therapy.

Appl Radiat Isot

January 2025

Institute of Nuclear Engineering and Science, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan; Nuclear Science and Technology Development Center, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan. Electronic address:

In clinical boron neutron capture therapy (BNCT), the distribution of dose to a heterogeneous medium that is predicted by a treatment planning system (TPS) should be experimentally validated. A head phantom specifically developed for this purpose is described and demonstrated herein. The cylindrical phantom exhibits distinct regions made from four materials (polymethyl methacrylate, calcium phosphate, air, and boric acid) to approximate a head structure with explicitly defined skin, skull, and brain tissue with a cavity and tumor within.

View Article and Find Full Text PDF

Purpose: Boron neutron capture therapy (BNCT) perform as a treatment option for locally advanced or recurrent unresectable head and neck cancers since June 2020 in Japan. The effect of BNCT on parotid carcinoma, which presents a variety of histologic types, remains unclear. The object of this study was to investigate the antitumor efficacy of BNCT against parotid gland carcinoma by focusing on LAT1, which is involved in the uptake of L-BPA, the boron compound used in BNCT.

View Article and Find Full Text PDF

A 77-year-old man was referred to our department because of macrohematuria, oliguria, and a serum creatinine level of 2.47 mg/dL during boron neutron capture therapy (BNCT) for oropharyngeal cancer. At baseline, his creatinine level had been 0.

View Article and Find Full Text PDF

Rechargeable lithium-ion batteries (LIBs) are critical for enabling sustainable energy storage. The capacity of cathode materials is a major limiting factor in the LIB performance, and doping has emerged as an effective strategy for enhancing the electrochemical properties of nickel-rich layered oxides such as NCM811. In this study, boron is homogeneously incorporated into the tetrahedral site of NCM811 through co-precipitation, leading to an inductive effect on transition metal (TM)-O-B bonds that delayed structural collapse and reduced oxygen release.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!