Even in healthy subjects, the heart ages along with other organs of the body. A prominent change is progressive left ventricular (LV) diastolic dysfunction, even though LV mass increases slightly during aging. Accordingly, assessment of LV dysfunction can be employed as a surrogate marker of cardiac age. The clinical factors that may accelerate the cardiac aging process include visceral obesity, diabetes mellitus, dyslipidemia, and hypertension. At the molecular level in cardiac myocytes, reactive oxygen species, transforming growth factor-β, mitochondrial function, and lysosomal function are also related to cardiac age. Furthermore, age-related LV dysfunction has been shown to be one of the main risk factors for future heart failure. Consequently, assessment of LV diastolic function is necessary for both preventing cardiac events and assessing cardiac age. Echocardiography provides a noninvasive assessment of cardiac structure and function. This review describes how to assess cardiac aging using echocardiography, and how to interpret the clinical relevance of the findings.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12574-016-0292-6 | DOI Listing |
Blood Press
January 2025
Jagiellonian University Medical College, 1st Department of Cardiology, Interventional Electrocardiology and Arterial Hypertension, Kraków, Poland.
Purpose: Ventricular-arterial coupling (VAC) is a crucial concept in cardiovascular physiology, representing the dynamic interaction between the left ventricle and the arterial system. This comprehensive literature review explores the changes in VAC with aging and various cardiovascular diseases (CVDs).
Materials And Methods: This literature review covers studies on changes in VAC with age and common CVDs such as arterial hypertension, atrial fibrillation, heart failure with preserved and reduced ejection fraction and aortic stenosis.
JAMA
January 2025
Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.
Importance: Chronic obstructive pulmonary disease (COPD) is often undiagnosed. Although genetic risk plays a significant role in COPD susceptibility, its utility in guiding spirometry testing and identifying undiagnosed cases is unclear.
Objective: To determine whether a COPD polygenic risk score (PRS) enhances the identification of undiagnosed COPD beyond a case-finding questionnaire (eg, the Lung Function Questionnaire) using conventional risk factors and respiratory symptoms.
Intensive Care Med Exp
January 2025
Department of Life Sciences, Aberystwyth University, Ceredigion, UK.
Purpose: The landiolol and organ failure in patients with septic shock (STRESS-L study) included a pre-planned sub-study to assess the effect of landiolol treatment on inflammatory and metabolomic markers.
Methods: Samples collected from 91 patients randomised to STRESS-L were profiled for immune and metabolomic markers. A panel of pro- and anti-inflammatory cytokines were measured through commercially acquired multiplex Luminex assays and statistically analysed by individual and cluster-level analysis (patient).
Adv Exp Med Biol
January 2025
Requalite GmbH, Gräfelfing, Germany.
Peptide nanofibers have been attractive targets for regenerative medicine applications due to their tailorability to be easily functionalized for specific bioactivity, biocompatibility, ease of synthesis, adjustability of their physicochemical characteristics, and lack of biological contamination. Research groups have investigated their use for the regeneration of various tissues, such as bone, cartilage, brain, peripheral nerves, cardiac tissue, vascular tissues, endocrine cells, muscles, etc., for the treatment of degenerative diseases or tissue loss due to accidents or aging.
View Article and Find Full Text PDFCirc Res
January 2025
British Heart Foundation Centre for Research Excellence, School of Cardiovascular and Metabolic Medicine and Sciences, James Black Centre, King's College London, United Kingdom (C.Y.H., M.-Y.W., J.T., S.A., L.D., G.A., R.H., C.M.S.).
Background: Vascular calcification is a detrimental aging pathology markedly accelerated in patients with chronic kidney disease. Prelamin A is a biomarker of vascular smooth muscle cell aging that accelerates calcification however the mechanisms remain undefined.
Methods: Vascular smooth muscle cells were transduced with prelamin A using an adenoviral vector and epigenetic modifications were monitored using immunofluorescence and targeted polymerase chain reaction array.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!