In roots of gramineous plants, lysigenous aerenchyma is created by the death and lysis of cortical cells. Rice (Oryza sativa) constitutively forms aerenchyma under aerobic conditions, and its formation is further induced under oxygen-deficient conditions. However, maize (Zea mays) develops aerenchyma only under oxygen-deficient conditions. Ethylene is involved in lysigenous aerenchyma formation. Here, we investigated how ethylene-dependent aerenchyma formation is differently regulated between rice and maize. For this purpose, in rice, we used the reduced culm number1 (rcn1) mutant, in which ethylene biosynthesis is suppressed. Ethylene is converted from 1-aminocyclopropane-1-carboxylic acid (ACC) by the action of ACC oxidase (ACO). We found that OsACO5 was highly expressed in the wild type, but not in rcn1, under aerobic conditions, suggesting that OsACO5 contributes to aerenchyma formation in aerated rice roots. By contrast, the ACO genes in maize roots were weakly expressed under aerobic conditions, and thus ACC treatment did not effectively induce ethylene production or aerenchyma formation, unlike in rice. Aerenchyma formation in rice roots after the initiation of oxygen-deficient conditions was faster and greater than that in maize. These results suggest that the difference in aerenchyma formation in rice and maize is due to their different mechanisms for regulating ethylene biosynthesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/pce.12766 | DOI Listing |
Plants (Basel)
December 2024
Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Joint International Research Laboratory of Agriculture and Agri-Product Safetyof Ministry of Education of China, Yangzhou University, Yangzhou 225009, China.
Waterlogging is becoming a global issue, affecting crop growth and yield in low-lying rainfed areas. A DH line, TamF169, showing superior waterlogging tolerance, and its waterlogging-sensitive parent, Franklin, were used to conduct transcriptome analyses. The results showed that 2209 and 2578 differentially expressed genes (DEGs) in Franklin and 1997 and 1709 DEGs in TamF169 were detected by comparing gene expression levels under control and waterlogging after 4 and 8 days, respectively, with 392 and 257 DEGs being specific to TamF169 after 4 and 8 days under waterlogging, respectively.
View Article and Find Full Text PDFBiol Rev Camb Philos Soc
December 2024
Department of Plant Science, Central University of Kerala, Kasaragod, Kerala, 671320, India.
Mangroves are intertidal plants that survive extreme environmental conditions through unique adaptations. Various reviews on diverse physiological and biochemical stress responses of mangroves have been published recently. However, a review of how mangroves respond anatomically to stresses is lacking.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2024
Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-Ku, Saitama-Shi, Saitama, 338-8570, Japan.
Nanoplastics have become a growing concern due to their potential impact on freshwater vegetation. The uptake, translocation, and effects of 0.05-µm nanoplastics on Myriophyllum sp.
View Article and Find Full Text PDFSci Rep
November 2024
Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box. 2460, 11451, Riyadh, Saudi Arabia.
Fimbristylis complanata is an aquatic halophytic sedge that thrives in salt-affected land, marshes, and water channels. Two ecotypes (HR-Rasool headworks ECe 19.45; SH- Sahianwala 47.
View Article and Find Full Text PDFPlant Sci
January 2025
Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China. Electronic address:
The leaf midrib system is essential for plant growth and development, facilitating nutrient transport, providing structural support, enabling gas exchange, and enhancing resilience to environmental stresses. However, the molecular mechanism regulating leaf midrib development is still unclear.In this study, we reported a rice solid midrib 1 (sm1) mutant, exhibiting solid leaf aerenchyma and abaxial rolling leaves due to abnormal development of parenchyma and bulliform cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!