The present study aims to predict the action targets of antidepressant active ingredients of Xiaoyaosan to understand the "multi-components, multi-targets and multi-pathways" mechanism. Using network pharmacology, the reported antidepressant active ingredients in Xiaoyaosan (saikosaponin A, saikosaponin C, saikosaponin D, ferulic acid, Z-ligustilide, atractylenolide I, atractylenolide II, atractylenolide III, paeoniflorin, albiflorin, liquiritin, glycyrrhizic acid and pachymic acid), were used to predict the targets of main active ingredients of Xiaoyaosan according to reversed pharmacophore matching method. The prediction was made via screening of the antidepressive drug targets approved by FDA in the DrugBank database and annotating the information of targets with the aid of MAS 3.0 biological molecular function software. The Cytoscape software was used to construct the Xiaoyaosan ingredients-targets-pathways network. The network analysis indicates that the active ingredients in Xiaoyaosan involve 25 targets in the energy metabolism-immune-signal transmutation relevant biological processes. The antidepressant effect of Xiaoyaosan reflects the features of traditional Chinese medicine in multi-components, multi-targets and multi-pathways. This research provides a scientific basis for elucidation of the antidepressant pharmacological mechanism of Xiaoyaosan.

Download full-text PDF

Source

Publication Analysis

Top Keywords

active ingredients
16
ingredients xiaoyaosan
16
action targets
8
targets antidepressant
8
xiaoyaosan
8
antidepressant active
8
saikosaponin saikosaponin
8
atractylenolide atractylenolide
8
targets
6
antidepressant
5

Similar Publications

The utilization of exogenous fiber-degrading enzymes in commercial swine diets is a strategy to increase the nutrient and energy density of poorly digestible ingredients. In a prior set of studies, dietary multienzyme blend (MEblend) supplementation increased the apparent total tract digestibility (ATTD) of nutrients, non-starch polysaccharides, and energy in complete high-fibrous gestation diets by 6% when fed to gestating sows. The current study aimed to determine the effects of MEblend (containing xylanase, β-glucanase, cellulase, amylase, protease, pectinase, and invertase activities) supplementation on ATTD of energy and nutrients of individual feedstuffs commonly used in gestating sow diets across major pork-producing regions worldwide, which differ in their fibrous components.

View Article and Find Full Text PDF

Effect of anemoside B4 on ameliorating cerebral ischemic/reperfusion injury.

Iran J Basic Med Sci

January 2025

Department of Basic Medicine, Chongqing Three Gorges Medical College, Chongqing 404100, China.

Objectives: Anemoside B4 (AB4) is a multifunctional compound with anti-inflammatory, anti-apoptotic, antioxidant, antiviral, and autophagy-enhancing effects. However, the role of AB4 in cerebral ischemia/reperfusion injury (CIRI) remains obscure. This experiment aims to investigate the pharmacological effects of AB4 in CIRI.

View Article and Find Full Text PDF

Characterized by a cascade of profound changes in nucleus pulposus (NP) cells, extracellular matrix (ECM), and biomechanics, intervertebral disc degeneration is a common multifactorial condition that may lead to various degenerative lumbar disorders. Therapeutic strategies targeting a single factor have shown limited efficacy in treating disc degeneration, and approaches that address multiple pathological ingredients are barely reported. In this study, engineered cell membrane-encapsulated keratin nanoparticles are developed to simultaneously alleviate NP cell senescence and promote ECM remodeling.

View Article and Find Full Text PDF

The present study aimed to optimize a mouth-dissolving film (MDF) made from Pongamia pinnata stem bark extract to increase patient compliance and accelerate oral disease therapy. Several stem bark extracts were prepared, and karanjin was used as an herbal marker for the extracts. The ethanolic extract showed the maximum yield (12.

View Article and Find Full Text PDF

In our research, we constructed models of renal ischemia-reperfusion (I/R)-exposed acute kidney injury (AKI) and unilateral ureteral obstruction (UUO)-stimulated renal fibrosis (RF) in C57BL/6 mice and HK-2 cells. We firstly authenticated that oral pinocembrin (PIN) administration obviously mitigated tissue damage and renal dysfunction induced by I/R injury, and PIN attenuated UUO-caused RF, as confirmed by the reduced expression of fibrotic markers as well as hematoxylin-eosin (H&E), Sirius red, immunohistochemistry, and Masson staining. Meanwhile, the beneficial role of PIN was again demonstrated in HK-2 cells with hypoxia-reoxygenation (H/R) or transforming growth factor beta-1 (TGF-β1) treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!