The Department of Defense has pursued the integration of virtual reality simulation into medical training and applications to fulfill the need to train 100,000 military health care personnel annually. Medical personnel transitions, both when entering an operational area and returning to the civilian theater, are characterized by the need to rapidly reacquire skills that are essential but have decayed through disuse or infrequent use. Improved efficiency in reacquiring such skills is critical to avoid the likelihood of mistakes that may result in mortality and morbidity. We focus here on a study testing a theory of how the skills required for minimally invasive surgery for military surgeons are learned and retained. Our adaptive virtual reality surgical training system will incorporate an intelligent mechanism for tracking performance that will recognize skill deficiencies and generate an optimal adaptive training schedule. Our design is modeling skill acquisition based on a skill retention theory. The complexity of appropriate training tasks is adjusted according to the level of retention and/or surgical experience. Based on preliminary work, our system will improve the capability to interactively assess the level of skills learning and decay, optimizes skill relearning across levels of surgical experience, and positively impact skill maintenance. Our system could eventually reduce mortality and morbidity by providing trainees with the reexperience they need to help make a transition between operating theaters. This article reports some data that will support adaptive tutoring of minimally invasive surgery and similar surgical skills.

Download full-text PDF

Source
http://dx.doi.org/10.7205/MILMED-D-15-00164DOI Listing

Publication Analysis

Top Keywords

virtual reality
12
adaptive virtual
8
mortality morbidity
8
minimally invasive
8
invasive surgery
8
system will
8
surgical experience
8
skills
6
training
5
skill
5

Similar Publications

Background: Recently, there has been a surge in virtual reality (VR)-based training for upper limb (UL) rehabilitation, which has yielded mixed results. Therefore, we aimed to explore the effects of conventional therapy combined with VR-based training on UL dysfunction during post-stroke rehabilitation.

Methods: Studies published in English before May 2023 were retrieved from PubMed, Embase, and the Cochrane Library.

View Article and Find Full Text PDF

PreVISE: an efficient virtual reality system for SEEG surgical planning.

Virtual Real

December 2024

Department of Computer Science and Software Engineering, Concordia University, Montreal, Québec Canada.

Epilepsy is a neurological disorder characterized by recurring seizures that can cause a wide range of symptoms. Stereo-electroencephalography (SEEG) is a diagnostic procedure where multiple electrodes are stereotactically implanted within predefined brain regions to identify the seizure onset zone, which needs to be surgically removed or disconnected to achieve remission of focal epilepsy. This procedure is complex and challenging due to two main reasons.

View Article and Find Full Text PDF

The development of serious video games using gamification techniques and applying them to the management of mental health problems has emerged as one of the significant innovations in technology and mental health. However, various issues exist from the design stage of video games to the implementation stage, which can lead to problems with usability and accessibility and have non-beneficial effects on the individual. This review article provides an overview of various gamification technologies currently used in video games and virtual reality-based video games.

View Article and Find Full Text PDF

The editorial introduces the JMI Special Section on Augmented and Virtual Reality in Medical Imaging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!