A staphylolytic fusion protein (chimeric enzyme K-L) was created, harboring three unique lytic activities composed of the LysK CHAP endopeptidase, and amidase domains, and the lysostaphin glycyl-glycine endopeptidase domain. To assess the potential of possible therapeutic applications, the kinetic behavior of chimeric enzyme K-L was investigated. As a protein antimicrobial, with potential antigenic properties, the biophysical effect of including chimeric enzyme K-L in anionic polymer matrices that might help reduce the immunogenicity of the enzyme was tested. Chimeric enzyme K-L reveals a high lytic activity under the following optimal () conditions: pH 6.0-10.0, t 20-30 °C, NaCl 400-800 mM. At the working temperature of 37 °C, chimeric enzyme K-L is inactivated by a monomolecular mechanism and possesses a high half-inactivation time of 12.7 ± 3.0 h. At storage temperatures of 22 and 4 °C, a complex mechanism (combination of monomolecular and bimolecular mechanisms) is involved in the chimeric enzyme K-L inactivation. The optimal storage conditions under which the enzyme retains 100 % activity after 140 days of incubation (4 °C, the enzyme concentration of 0.8 mg/mL, pH 6.0 or 7.5) were established. Chimeric enzyme K-L is included in complexes with block-copolymers of poly-L-glutamic acid and polyethylene glycol, while the enzyme activity and stability are retained, thus suggesting methods to improve the application of this fusion as an effective antimicrobial agent.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12010-016-2115-7 | DOI Listing |
Commun Biol
December 2024
Mayo Clinic, Rochester, MN, USA.
Antibody-drug conjugates (ADCs) are increasingly used in clinic for multiple indications and may improve upon the activity of parental antibodies by delivering cytotoxic payloads into target cells. This activity is predicated upon internalization to release the cytotoxic payloads intracellularly. Since binding of ADCs to their cell surface targets does not guarantee their internalization, we hypothesize that proteolysis targeting chimeras (PROTACs) could improve the activity of ADCs through forced internalization.
View Article and Find Full Text PDFNat Commun
December 2024
Laboratory of Retrovirology, The Rockefeller University, New York, NY, 10065, USA.
ZAP is an antiviral protein that binds to and depletes viral RNA, which is often distinguished from vertebrate host RNA by its elevated CpG content. Two ZAP cofactors, TRIM25 and KHNYN, have activities that are poorly understood. Here, we show that functional interactions between ZAP, TRIM25 and KHNYN involve multiple domains of each protein, and that the ability of TRIM25 to multimerize via its RING domain augments ZAP activity and specificity.
View Article and Find Full Text PDFWorld J Surg Oncol
December 2024
Department of Urology, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Jiangsu, Nanjing, 210008, China.
Background: TFE3-translocation renal cell carcinoma (TFE3-tRCC), a distinct subtype of kidney cancer characterized by Xp11.2 translocations, involving TFE3 fusion with various partner genes, lacks effective treatments and prognostic biomarkers for advanced stages. This study aimed to unravel the pathogenic mechanisms and uncover novel therapeutic targets.
View Article and Find Full Text PDFFront Immunol
December 2024
Myeloid Therapeutics, Inc., Cambridge, MA, United States.
Introduction: The approval of chimeric antigen receptor (CAR) T cell therapies for the treatment of B cell malignancies has fueled the development of numerous cell therapies. However, these cell therapies are complex and costly, and unlike in hematological malignancies, outcomes with most T cell therapies in solid tumors have been disappointing. Here, we present a novel approach to directly program myeloid cells by administering novel TROP2 CAR mRNA encapsulated in lipid nanoparticles (LNPs).
View Article and Find Full Text PDFSci Rep
December 2024
Department of Anatomy, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand.
SARS-CoV-2, the cause of COVID-19, primarily targets lung tissue, leading to pneumonia and lung injury. The spike protein of this virus binds to the common receptor on susceptible tissues and cells called the angiotensin-converting enzyme-2 (ACE2) of the angiotensin (ANG) system. In this study, we produced chimeric Macrobrachium rosenbergii nodavirus virus-like particles, presenting a short peptide ligand (ACE2tp), based on angiotensin-II (ANG II), on their outer surfaces to allow them to specifically bind to ACE2-overexpressing cells called ACE2tp-MrNV-VLPs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!