Objectives: Clinical studies have proven the potential of immunotherapy in malignancies. To increase efficacy, a prerequisite is that treatment is tailored, so precision immune-oncology is the logical next step. In order to tailor treatment, characterization of the patient's tumor environment is key. Pleural effusion (PE) often accompanies malignant pleural mesothelioma (MPM) and is an important part of the MPM environment. Furthermore, the composition of PE is used as surrogate for the tumor. In this study, we provide an insight in the dynamics of the MPM environment through characterization of PE composition over time and show that the immunological characteristics of PE do not necessarily mirror those of the tumor.
Materials And Methods: From 5 MPM patients, PE and tumor biopsies were acquired at the same time point. From one of these patients multiple PEs were obtained. PEs were acquired performing thoracocenteses and total cell amounts were determined. Immunohistochemistry was performed to quantify immune cell composition (T cells, macrophages) and tumor cells in PE derived cytospins and tumor biopsies.
Results: The PE amount and (immune) cellular composition varied considerably over time between multiple (n=10) thoracocenteses. These dynamics could in part be attributed to the treatment regimen consisting of standard chemotherapy and dendritic cell (DC)-based immunotherapy. In addition, the presence of T cells and macrophages in PE did not necessarily mirror the infiltration of these immune cells within tumor biopsies in 4 out of 5 patients.
Conclusions: In this proof-of-concept study with limited sample size, we demonstrate that the composition of PE is dynamic and influenced by treatment. Furthermore, the immune cell composition of PE does not automatically reflect the properties of tumor tissue. This has major consequences when applying precision immunotherapy based on PE findings in patients. Furthermore, it implies a regulated trafficking of immune regulating cells within the tumor environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.lungcan.2016.04.015 | DOI Listing |
Front Genome Ed
December 2024
Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.
CRISPR-Cas (Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR-associated proteins) has undergone marked advancements since its discovery as an adaptive immune system in bacteria and archaea, emerged as a potent gene-editing tool after the successful engineering of its synthetic guide RNA (sgRNA) toward the targeting of specific DNA sequences with high accuracy. Besides its DNA editing ability, further-developed Cas variants can also edit the epigenome, rendering the CRISPR-Cas system a versatile tool for genome and epigenome manipulation and a pioneering force in precision medicine. This review explores the latest advancements in CRISPR-Cas technology and its therapeutic and biomedical applications, highlighting its transformative impact on precision medicine.
View Article and Find Full Text PDFAdv Mater
December 2024
Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
The precise manipulation of PANoptosis, a newly defined cell death pathway encompassing pyroptosis, apoptosis, and necroptosis, is highly desired to achieve safer cancer immunotherapy with tumor-specific inflammatory responses and minimal side effects. Nonetheless, this objective remains a formidable challenge. Herein, an "AND" logic-gated strategy for accurately localized PANoptosis activation, utilizing composite 3D-printed bioactive glasses scaffolds integrated with epigenetic regulator-loaded porous piezoelectric SrTiO nanoparticles is proposed.
View Article and Find Full Text PDFChin J Nat Med
December 2024
Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Multi-component of Traditional Chinese Medicine and Microecology Research Center, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China; Jiangsu Clinical Innovation Center of Digestive Cancer of Traditional Chinese Medicine, Nanjing 210028, China. Electronic address:
The treatment of tumors continues to be significantly challenging. The presence of multiple modalities, including surgery, radiation, chemotherapy and immunotherapy, the therapeutic outcomes remain limited and are often associated with adverse effects and inconsistent efficacy across cancer types. Recent studies have highlighted the potential of active components from traditional Chinese medicine (TCM) for their anti-cancer properties, which are attributable to multi-targeted mechanisms and broad pharmacological actions.
View Article and Find Full Text PDFJ Cancer Res Clin Oncol
December 2024
Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Bratislava, Slovakia.
Despite significant advances in immunotherapy, its efficacy in solid tumors remains limited. Exosomes, a primary type of extracellular vesicles, can transport diverse intracellular molecules to nearby or distant cells and organs, facilitating numerous biological functions. Research has shown that exosomes have the dual ability to both activate and suppress the immune system.
View Article and Find Full Text PDFMol Biol Rep
December 2024
Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
Colorectal cancer (CRC) ranks as the third most common cancer worldwide and remains a major cause of cancer-related deaths, necessitating the development of innovative therapeutic approaches beyond conventional treatment modalities. Conventional therapies, such as radiation, chemotherapy, and surgery, are hindered by challenges like imprecise targeting, substantial toxicity, and the development of resistance. Exosome-driven nano-immunotherapy has emerged as a groundbreaking approach that leverages the natural properties of exosomes-cell-derived vesicles known for their role in intercellular communication-to deliver therapeutic agents with high precision and specificity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!