The parapontine nucleus of the thalamus (PPN) is a neuromodulatory midbrain structure with widespread connectivity to cortical and subcortical motor structures, as well as the spinal cord. The PPN also projects to the thalamus, including visual relay nuclei like the LGN and the pulvinar. Moreover, there is intense connectivity with sensory structures of the tegmentum in particular with the superior colliculus (SC). Given the existence and abundance of projections to visual sensory structures, it is likely that activity in the PPN has some modulatory influence on visual sensory selection. Here we address this possibility by measuring the visual discrimination performance (luminance contrast thresholds) in a group of patients with Parkinson's Disease (PD) treated with deep-brain stimulation (DBS) of the PPN to control gait and postural motor deficits. In each patient we measured the luminance-contrast threshold of being able to discriminate an orientation-target (Gabor-grating) as a function of stimulation frequency (high 60Hz, low 8/10, no stimulation). Thresholds were determined using a standard staircase-protocol that is based on parameter estimation by sequential testing (PEST). We observed that under low frequency stimulation thresholds increased relative to no and high frequency stimulation in five out of six patients, suggesting that DBS of the PPN has a frequency-dependent impact on visual selection processes at a rather elementary perceptual level.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4864298 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0155206 | PLOS |
Sci Rep
December 2024
Department of Artificial Intelligence Convergence, Chonnam National University, Gwangju, 61186, Republic of Korea.
Polarization-sensitive optical coherence tomography (PS-OCT) measures the polarization state of backscattered light from tissues and provides valuable insights into the birefringence properties of biological tissues. Contrastive unpaired translation (CUT) was used in this study to generate a synthetic PS-OCT image from a single OCT image. The challenges related to extensive data requirements relying on labeled datasets using only pixel-wise correlations that make it difficult to efficiently regenerate the periodic patterns observed in PS-OCT images were addressed.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Neurology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461, Japan.
Visual hallucinations (VH) and pareidolia, a type of minor hallucination, share common underlying mechanisms. However, the similarities and differences in their brain regions remain poorly understood in Parkinson's disease (PD). A total of 104 drug-naïve PD patients underwent structural MRI and were assessed for pareidolia using the Noise Pareidolia Test (NPT) were enrolled.
View Article and Find Full Text PDFAging Cell
December 2024
Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
Despite advances in understanding molecular and cellular changes in the aging nervous system, the upstream drivers of these changes remain poorly defined. Here, we investigate the roles of non-neural tissues in neuronal aging, using the cutaneous PVD polymodal sensory neuron in Caenorhabditis elegans as a model. We demonstrate that during normal aging, PVD neurons progressively develop excessive dendritic branching, functionally correlated with age-related proprioceptive deficits.
View Article and Find Full Text PDFSci Rep
December 2024
Division of Rare Cancer Research, National Cancer Center Research Institute, Tokyo, 1040045, Japan.
Epithelioid sarcomas are rare soft tissue tumors and have possibility to involve the peripheral nerve and present as sensory and motor disorders. The symptoms are similar to those of nerve compression diseases. This situation is extremely rare in clinic and was only reported as several case reports in literature.
View Article and Find Full Text PDFJ Neurosci
December 2024
Department of Psychology, University of Virginia, Charlottesville VA 22904, USA
Sensory experience during development has lasting effects on perception and neural processing. Exposing juvenile animals to artificial stimuli influences the tuning and functional organization of the auditory cortex, but less is known about how the rich acoustical environments experienced by vocal communicators affect the processing of complex vocalizations. Here, we show that in zebra finches (), a colonial-breeding songbird species, exposure to a naturalistic social-acoustical environment during development has a profound impact on auditory perceptual behavior and on cortical-level auditory responses to conspecific song.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!