https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&id=27167718&retmode=xml&tool=Litmetric&email=readroberts32@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09 271677182018031620181113
2045-232262016May11Scientific reportsSci RepNew superconductor LixFe1+δSe (x ≤ 0.07, Tc up to 44 K) by an electrochemical route.25624256242562410.1038/srep25624The superconducting transition temperature (Tc) of tetragonal Fe1+δSe was enhanced from 8.5 K to 44 K by chemical structure modification. While insertion of large alkaline cations like K or solvated lithium and iron cations in the interlayer space, the [Fe2Se2] interlayer separation increases significantly from 5.5 Å in native Fe1+δSe to >7 Å in KxFe1-ySe and to >9 Å in Li1-xFex(OH)Fe1-ySe, we report on an electrochemical route to modify the superconducting properties of Fe1+δSe. In contrast to conventional chemical (solution) techniques, the electrochemical approach allows to insert non-solvated Li(+) into the Fe1+δSe structure which preserves the native arrangement of [Fe2Se2] layers and their small separation. The amount of intercalated lithium is extremely small (about 0.07 Li(+) per f.u.), however, its incorporation results in the enhancement of Tc up to ∼44 K. The quantum-mechanical calculations show that Li occupies the octahedrally coordinated position, while the [Fe2Se2] layers remain basically unmodified. The obtained enhancement of the electronic density of states at the Fermi level clearly exceeds the effect expected on basis of rigid band behavior.AlekseevaAnastasia MAMDepartment of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia.MPG-MSU Partner Group, Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia.DrozhzhinOleg AOADepartment of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia.MPG-MSU Partner Group, Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia.DosaevKirill AKADepartment of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia.MPG-MSU Partner Group, Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia.AntipovEvgeny VEVDepartment of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia.ZakharovKonstantin VKVDepartment of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia.VolkovaOlga SOSDepartment of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia.ChareevDmitriy ADAInstitute of Experimental Mineralogy, Russian Academy of Sciences, 142432 Chernogolovka, Russia.VasilievAlexander NANDepartment of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia.KozCevriyeCMax-Planck-Institut für Chemische Physik fester Stoffe, 01187 Dresden, Germany.SchwarzUlrichUMax-Planck-Institut für Chemische Physik fester Stoffe, 01187 Dresden, Germany.RosnerHelgeHMax-Planck-Institut für Chemische Physik fester Stoffe, 01187 Dresden, Germany.GrinYuriYMax-Planck-Institut für Chemische Physik fester Stoffe, 01187 Dresden, Germany.engJournal ArticleResearch Support, Non-U.S. Gov't20160511
EnglandSci Rep1015632882045-2322
2015112720164202016512602016512602016512612016511epublish27167718PMC486325410.1038/srep25624srep25624Hsu F.-C. et al.. Superconductivity in PbO-type structure α-FeSe, PNAS, 105(38), 14262–14264 (2008).PMC253106418776050Williams A. J., McQueen T. M. & Cava R. J. The stoichiometry of FeSe, Solid State Commun., 149, 1507–1509 (2009).McQueen T. M. et al.. Extreme sensitivity of superconductivity to stoichiometry in Fe1+δSe, Phys. Rev. B, 79, 014522 (2009).Guo G. et al.. Superconductivity in iron selenide KxFe2Se2 (0 ≤ x ≤ 1.0), Phys. Rev. B, 82, 180520(R) (2010).Ying J. J. et al.. Superconductivity and magnetic properties of single crystals of K0.75Fe1.66Se2 and Cs0.81Fe1.61Se2, Phys. Rev. B, 83, 212502 (2011).Ying T. P. et al.. Observation of superconductivity at 30 ∼ 46 K in AxFe2Se2 (A = Li, Na, Ba, Sr, Ca, Yb, and Eu), Sci. Rep. 2, 426 (2012).PMC336128422645642Burrard-Lucas M. et al.. Enhancement of the superconducting transition temperature of FeSe by intercalation of a molecular spacer layer, Nature Materials, 12, 15–19 (2013).23104153Sun H. et al.. Soft chemical control of superconductivity in lithium iron selenide hydroxides Li1−xFex(OH)Fe1−ySe, Inorg. Chem., 54, 1958–1964 (2015).25613347Lu X. F. et al.. Coexistence of superconductivity and antiferromagnetism in (Li0.8Fe0.2)OHFeSe, Nature Materials, 14, 325–329 (2015).25502096Abe H., Noji T., Kato M. & Koike Y. Electrochemical Li-intercalation into the Fe-based superconductor FeSe1−xTex, Physica C, 470, S487–S488 (2010).Wei D. et al.. Layer structured α-FeSe: A potential anode material for lithium storage, Electrochem. Comm., 38, 124–127 (2014).Shen S.-J. et al.. Electro-chemical synthesis of alkali-intercalated iron selenide Superconductors. Chin. Phys. B 24, 117406 (2015).Koz C. et al.. Synthesis and crystal growth of tetragonal β-Fe1.01Se, ZAAC, 640, 1600–1606 (2014).Pomjakushina E., Conder K., Pomjakushin V., Bendele M. & Khasanov R. Synthesis, crystal structure, and chemical stability of the superconductor FeSe1−x, Phys. Rev. B, 80, 024517 (2009).Huber D. L. Synthesis, Properties, and Applications of Iron Nanoparticles, Small 1, 482–501 (2005).17193474Grinstaff M. W., Salamon M. B. & Suslik K. S., Magnetic properties of amorphous iron. Phys. Rev. B, 48, 269 (1993).10006773Abdel-Hafiez M. et al.. Temperature dependence of lower critical field Hc1(T) shows nodeless superconductivity in FeSe, Phys. Rev. B, 88, 174512 (2013).Inorganic Crystal Structure Database (ICSD). Database issued by Fachinformationszentrum Karlsruhe (FIZ), Germany, Version 2014-1.Morozov I. et al.. Single crystal growth and characterization of superconducting LiFeAs, Crystal Growth and Design, 10, 4428–4432 (2010).Chareev D. et al.. Single crystal growth and characterization of tetragonal FeSe1−x superconductors. Cryst. Eng. Comm., 15, 1989–1993 (2013).Powder Diffraction File (PDF-2). Database issued by International Center for Diffraction Data, Newton Square, USA, 1998.Koepernik K. & Eschrig H. Full-potentional nonorthogonal local orbital-minimum basis band-structure scheme, Phys. Rev. B, 59, 1743–1757 (1999).Opahle I., Koepernik K. & Eschrig H. Full-potentional band-structure calculation of iron pyrite, Phys. Rev. B, 60, 14035 (1999).Perdew J. P. & Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy, Phys. Rev. B 45, 13244 (1992).10001404Perdew J. P., Burke K. & Ernzerhof M. Generalized gradient approximation made simple, Phys. Rev. Lett. 77, 3865–3867 (1996).10062328