This study investigates an X-ray dose measurement method for computed tomography using Gafchromic films. Nonuniformity of the active layer is a major problem in Gafchromic films. In radiotherapy, nonuniformity error is reduced by applying the double-exposure technique, but this is impractical in diagnostic radiology because of the heel effect. Therefore, we propose replacing the X-rays in the double-exposure technique with ultraviolet (UV)-A irradiation of Gafchromic EBT2 and EBT3. To improve the reproducibility of the scan position, Gafchromic EBT2 and EBT3 films were attached to a 3-mm-thick acrylic plate. The samples were then irradiated with a 10 W UV-A fluorescent lamp placed at a distance of 72cm for 30, 60, and 90 minutes. The profile curves were evaluated along the long and short axes of the film center, and the standard deviations of the pixel values were calculated over large areas of the films. Paired t-test was performed. UV-A irradiation exerted a significant effect on Gafchromic EBT2 (paired t-test; p = 0.0275) but not on EBT3 (paired t-test; p = 0.2785). Similarly, the homogeneity was improved in Gafchromic EBT2 but not in EBT3. Therefore, the double-exposure technique under UV-A irradiation is suitable only for EBT2 films.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5690916 | PMC |
http://dx.doi.org/10.1120/jacmp.v17i3.5862 | DOI Listing |
Sci Rep
November 2024
Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy.
The sensitivity of radiochromic films to UV-blue light is increasingly considered for light dosimetry purposes, owing to their bidimensional detection capabilities and ease of use. While film response to radiation intensity has been widely investigated by commercial scanners, spatial resolution studies remain scarce, especially for small field-of-view applications. These are of growing interest due to the antimicrobial or photo-bio-stimulating effects of UV-blue light sources in in vitro, ex vivo and in vivo models, where precise knowledge of irradiation conditions with adequate spatial resolution is crucial.
View Article and Find Full Text PDFSci Rep
January 2024
Department of Physics, Faculty of Science, Zagazig University, PO 44519, Zagazig, Egypt.
The response of the modified GAFCHROMIC EBT2 radiochromic film to DC Oxygen glow discharge plasma was investigated using a flatbed scanner and an UV-Vis spectrophotometer. The film was modified by removing the polyester overlaminate, adhesive, and topcoat layers with a total thickness of 80 µm, and is now referred to as EBT2-M. The EBT2-M films were exposed to DC Oxygen plasma for different durations: 0, 0.
View Article and Find Full Text PDFRep Pract Oncol Radiother
May 2022
Department of Medical Physics, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
Background: The presence of heterogeneity within the radiation field increases the challenges of small field dosimetry. In this study, the performance of MAGIC polymer gel was evaluated in the dosimetry of small fields beyond bone heterogeneity.
Materials And Methods: Circular field sizes of 5, 10, 20 and 30 mm were used and Polytetrafluoroethylene with density of 2.
PLoS One
August 2022
Medical Physics Department, Graduate School of Nuclear and Allied Sciences, University of Ghana, Atomic, Accra, Ghana.
Purpose: In vivo dosimetry is a quality assurance tool that provides post-treatment measurement of the absorbed dose as delivered to the patient. This dosimetry compares the prescribed and measured dose delivered to the target volume. In this study, a tissue-equivalent water phantom provided the simulation of the human environment.
View Article and Find Full Text PDFMed Phys
September 2022
Department of Medical Physics, University of the Free State, Bloemfontein, South Africa.
Background: This study measured and calculated dose distributions around a unique gold plaque for whole-eye radiotherapy (to treat retinoblastoma). The applicator consists of a pericorneal ring attached to the four extraocular muscles and four legs, each loaded with I-125 seeds. They are inserted beneath the conjunctiva in-between each pair of muscles and attached anteriorly to the ring.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!