This study investigates an X-ray dose measurement method for computed tomography using Gafchromic films. Nonuniformity of the active layer is a major problem in Gafchromic films. In radiotherapy, nonuniformity error is reduced by applying the double-exposure technique, but this is impractical in diagnostic radiology because of the heel effect. Therefore, we propose replacing the X-rays in the double-exposure technique with ultraviolet (UV)-A irradiation of Gafchromic EBT2 and EBT3. To improve the reproducibility of the scan position, Gafchromic EBT2 and EBT3 films were attached to a 3-mm-thick acrylic plate. The samples were then irradiated with a 10 W UV-A fluorescent lamp placed at a distance of 72cm for 30, 60, and 90 minutes. The profile curves were evaluated along the long and short axes of the film center, and the standard deviations of the pixel values were calculated over large areas of the films. Paired t-test was performed. UV-A irradiation exerted a significant effect on Gafchromic EBT2 (paired t-test; p = 0.0275) but not on EBT3 (paired t-test; p = 0.2785). Similarly, the homogeneity was improved in Gafchromic EBT2 but not in EBT3. Therefore, the double-exposure technique under UV-A irradiation is suitable only for EBT2 films.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5690916PMC
http://dx.doi.org/10.1120/jacmp.v17i3.5862DOI Listing

Publication Analysis

Top Keywords

gafchromic ebt2
20
ebt2 ebt3
16
double-exposure technique
12
uv-a irradiation
12
paired t-test
12
nonuniformity error
8
gafchromic films
8
gafchromic
7
ebt2
6
ebt3
5

Similar Publications

The sensitivity of radiochromic films to UV-blue light is increasingly considered for light dosimetry purposes, owing to their bidimensional detection capabilities and ease of use. While film response to radiation intensity has been widely investigated by commercial scanners, spatial resolution studies remain scarce, especially for small field-of-view applications. These are of growing interest due to the antimicrobial or photo-bio-stimulating effects of UV-blue light sources in in vitro, ex vivo and in vivo models, where precise knowledge of irradiation conditions with adequate spatial resolution is crucial.

View Article and Find Full Text PDF

The response of the modified GAFCHROMIC EBT2 radiochromic film to DC Oxygen glow discharge plasma was investigated using a flatbed scanner and an UV-Vis spectrophotometer. The film was modified by removing the polyester overlaminate, adhesive, and topcoat layers with a total thickness of 80 µm, and is now referred to as EBT2-M. The EBT2-M films were exposed to DC Oxygen plasma for different durations: 0, 0.

View Article and Find Full Text PDF

Background: The presence of heterogeneity within the radiation field increases the challenges of small field dosimetry. In this study, the performance of MAGIC polymer gel was evaluated in the dosimetry of small fields beyond bone heterogeneity.

Materials And Methods: Circular field sizes of 5, 10, 20 and 30 mm were used and Polytetrafluoroethylene with density of 2.

View Article and Find Full Text PDF

Purpose: In vivo dosimetry is a quality assurance tool that provides post-treatment measurement of the absorbed dose as delivered to the patient. This dosimetry compares the prescribed and measured dose delivered to the target volume. In this study, a tissue-equivalent water phantom provided the simulation of the human environment.

View Article and Find Full Text PDF

Background: This study measured and calculated dose distributions around a unique gold plaque for whole-eye radiotherapy (to treat retinoblastoma). The applicator consists of a pericorneal ring attached to the four extraocular muscles and four legs, each loaded with I-125 seeds. They are inserted beneath the conjunctiva in-between each pair of muscles and attached anteriorly to the ring.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!