The cheetah (Acinonyx jubatus) is Africa's most endangered large felid and listed as Vulnerable with a declining population trend by the IUCN(1). It ranges widely over sub-Saharan Africa and in parts of the Middle East. Cheetah conservationists face two major challenges, conflict with landowners over the killing of domestic livestock, and concern over range contraction. Understanding of the latter remains particularly poor(2). Namibia is believed to support the largest number of cheetahs of any range country, around 30%, but estimates range from 2,905(3) to 13,520(4). The disparity is likely a result of the different techniques used in monitoring. Current techniques, including invasive tagging with VHF or satellite/GPS collars, can be costly and unreliable. The footprint identification technique(5) is a new tool accessible to both field scientists and also citizens with smartphones, who could potentially augment data collection. The footprint identification technique analyzes digital images of footprints captured according to a standardized protocol. Images are optimized and measured in data visualization software. Measurements of distances, angles, and areas of the footprint images are analyzed using a robust cross-validated pairwise discriminant analysis based on a customized model. The final output is in the form of a Ward's cluster dendrogram. A user-friendly graphic user interface (GUI) allows the user immediate access and clear interpretation of classification results. The footprint identification technique algorithms are species specific because each species has a unique anatomy. The technique runs in a data visualization software, using its own scripting language (jsl) that can be customized for the footprint anatomy of any species. An initial classification algorithm is built from a training database of footprints from that species, collected from individuals of known identity. An algorithm derived from a cheetah of known identity is then able to classify free-ranging cheetahs of unknown identity. The footprint identification technique predicts individual cheetah identity with an accuracy of >90%.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4942022PMC
http://dx.doi.org/10.3791/54034DOI Listing

Publication Analysis

Top Keywords

footprint identification
16
identification technique
12
data visualization
8
visualization software
8
cheetah identity
8
footprint
6
spotting cheetahs
4
cheetahs identifying
4
identifying individuals
4
individuals footprints
4

Similar Publications

The comparative accuracy of handprints and footprints for stature and sex determination.

Forensic Sci Int Synerg

June 2025

Forensic Medicine and Toxicology Department, Faculty of Medicine, Ain Shams University, Elsarayat Street, 11517, Cairo, Egypt.

One of the main goals of forensic medicine is the successful identification of unidentified bodies. This is essential in mass disasters, criminal medicolegal investigations, and most cases of deaths with poorly preserved remains. This study aimed to assess the accuracy of anthropometric determination of handprint versus footprint dimensions for sex and stature estimation in a sample of the Egyptian population and to formulate equations for stature and sex determination using hand and footprint anthropometric measures.

View Article and Find Full Text PDF

Cholangiocarcinoma (CCA) represents approximately 3% of all gastrointestinal cancers and is a highly heterogeneous and aggressive malignancy originating from the epithelial cells of the biliary tree. CCA is classified by anatomical location into intrahepatic (iCCA), extrahepatic (eCCA), gallbladder cancer (GBC), and ampullary cancers. Although considered a rare tumor, CCA incidence has risen globally, particularly due to the increased diagnosis of iCCA.

View Article and Find Full Text PDF

How genetic variation contributes to adaptation at different environments is a central focus in evolutionary biology. However, most free-living species still lack a comprehensive understanding of the primary molecular mechanisms of adaptation. Here, we characterised the targets of selection associated with drastically different aquatic environments-humic and clear water-in the common freshwater fish, Eurasian perch (Perca fluviatilis).

View Article and Find Full Text PDF

Background: The anterior oblique bundle of the medial ulnar collateral ligament (UCL) inserts on the anteroinferior aspect of the humeral medial epicondyle, while the flexor pronator mass (FPM) originates superficial and proximal to the UCL. With valgus stress, these distinct footprints may produce injury patterns that affect only focal areas of the medial epicondyle.

Hypothesis: The proximal UCL can act on the medial epicondyle either in isolation or in conjunction with the FPM to form partial avulsion fracture patterns within the pediatric medial epicondyle, and the predominant pattern involves only the proximal UCL footprint.

View Article and Find Full Text PDF

Miniaturized spectral sensing with a tunable optoelectronic interface.

Sci Adv

January 2025

QTF Centre of Excellence, Department of Electronics and Nanoengineering, Aalto University, Espoo FI-00076 Aalto, Finland.

Reconstructive optoelectronic spectroscopy has generated substantial interest in the miniaturization of traditional spectroscopic tools, such as spectrometers. However, most state-of-the-art demonstrations face fundamental limits of rank deficiency in the photoresponse matrix. In this work, we demonstrate a miniaturized spectral sensing system using an electrically tunable compact optoelectronic interface, which generates distinguishable photoresponses from various input spectra, enabling accurate spectral identification with a device footprint of 5 micrometers by 5 micrometers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!