Mitochondrial Transfer by Photothermal Nanoblade Restores Metabolite Profile in Mammalian Cells.

Cell Metab

Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA. Electronic address:

Published: May 2016

mtDNA sequence alterations are challenging to generate but desirable for basic studies and potential correction of mtDNA diseases. Here, we report a new method for transferring isolated mitochondria into somatic mammalian cells using a photothermal nanoblade, which bypasses endocytosis and cell fusion. The nanoblade rescued the pyrimidine auxotroph phenotype and respiration of ρ0 cells that lack mtDNA. Three stable isogenic nanoblade-rescued clones grown in uridine-free medium showed distinct bioenergetics profiles. Rescue lines 1 and 3 reestablished nucleus-encoded anapleurotic and catapleurotic enzyme gene expression patterns and had metabolite profiles similar to the parent cells from which the ρ0 recipient cells were derived. By contrast, rescue line 2 retained a ρ0 cell metabolic phenotype despite growth in uridine-free selection. The known influence of metabolite levels on cellular processes, including epigenome modifications and gene expression, suggests metabolite profiling can help assess the quality and function of mtDNA-modified cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5062745PMC
http://dx.doi.org/10.1016/j.cmet.2016.04.007DOI Listing

Publication Analysis

Top Keywords

photothermal nanoblade
8
mammalian cells
8
gene expression
8
cells
6
mitochondrial transfer
4
transfer photothermal
4
nanoblade restores
4
metabolite
4
restores metabolite
4
metabolite profile
4

Similar Publications

Mitochondrial Transfer by Photothermal Nanoblade Restores Metabolite Profile in Mammalian Cells.

Cell Metab

May 2016

Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA. Electronic address:

mtDNA sequence alterations are challenging to generate but desirable for basic studies and potential correction of mtDNA diseases. Here, we report a new method for transferring isolated mitochondria into somatic mammalian cells using a photothermal nanoblade, which bypasses endocytosis and cell fusion. The nanoblade rescued the pyrimidine auxotroph phenotype and respiration of ρ0 cells that lack mtDNA.

View Article and Find Full Text PDF

Modifying the Mitochondrial Genome.

Cell Metab

May 2016

Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA. Electronic address:

Human mitochondria produce ATP and metabolites to support development and maintain cellular homeostasis. Mitochondria harbor multiple copies of a maternally inherited, non-nuclear genome (mtDNA) that encodes for 13 subunit proteins of the respiratory chain. Mutations in mtDNA occur mainly in the 24 non-coding genes, with specific mutations implicated in early death, neuromuscular and neurodegenerative diseases, cancer, and diabetes.

View Article and Find Full Text PDF

Direct Nuclear Delivery of DNA by Photothermal Nanoblade.

J Lab Autom

December 2015

Department of Mechanical and Aerospace Engineering, UCLA, Los Angeles, CA, USA

We demonstrate direct nuclear delivery of DNA into live mammalian cells using the photothermal nanoblade. Pulsed laser-triggered cavitation bubbles on a titanium-coated micropipette tip punctured both cellular plasma and nuclear membranes, which was followed by pressure-controlled delivery of DNA into the nucleus. High-level and efficient plasmid expression in different cell types with maintained cell viability was achieved.

View Article and Find Full Text PDF

Background: Burkholderia pseudomallei is the causative agent of melioidosis, a potentially fatal disease endemic in Southeast Asia and Northern Australia. This Gram-negative pathogen possesses numerous virulence factors including three "injection type" type three secretion systems (T3SSs). B.

View Article and Find Full Text PDF

To transfer large cargo into mammalian cells, we recently provided a new approach called a photothermal nanoblade. Micron-sized membrane pores generated by the nanoblade are surprisingly well repaired with little cell death, suggesting rapid membrane-resealing dynamics. Here, we report the resealing time of photothermal porated mammalian cell plasma membranes using an electrical impedance sensor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!