We have recently developed a simple, reusable and coupled whole-cell biocatalytic system with the capability of cofactor regeneration and biocatalyst immobilization for improved production yield and sustained synthesis. Described herewith is the experimental procedure for the development of such a system consisting of two E. coli strains that express functionally complementary enzymes. Together, these two enzymes can function co-operatively to mediate the regeneration of expensive cofactors for improving the product yield of the bioreaction. In addition, the method of synthesizing an immobilized form of the coupled biocatalytic system by encapsulation of whole cells in calcium alginate beads is reported. As an example, we present the improved biosynthesis of L-xylulose from L-arabinitol by coupling E. coli cells expressing the enzymes L-arabinitol dehydrogenase or NADH oxidase. Under optimal conditions and using an initial concentration of 150 mM L-arabinitol, the maximal L-xylulose yield reached 96%, which is higher than those reported in the literature. The immobilized form of the coupled whole-cell biocatalysts demonstrated good operational stability, maintaining 65% of the yield obtained in the first cycle after 7 cycles of successive re-use, while the free cell system almost completely lost the catalytic activity. Therefore, the methods reported here provides two strategies that could help improve the industrial production of L-xylulose, as well as other value-added compounds requiring the use of cofactors in general.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4941993PMC
http://dx.doi.org/10.3791/53944DOI Listing

Publication Analysis

Top Keywords

alginate beads
8
cofactor regeneration
8
coupled whole-cell
8
biocatalytic system
8
immobilized form
8
form coupled
8
immobilization multi-biocatalysts
4
multi-biocatalysts alginate
4
beads cofactor
4
regeneration improved
4

Similar Publications

Sodium alginate/low methoxyl pectin composite hydrogel beads prepared via gas-shearing technology for enhancing the colon-targeted delivery of probiotics and modulating gut microbiota.

Int J Biol Macromol

January 2025

College of Food Science and Engineering, Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Northwest A&F University, Yangling 712100, Shaanxi, China. Electronic address:

The probiotic encapsulation system has the potential to enhance the prebiotic effects of probiotics. However, challenges arise from the release behavior of this system in vivo and the large size of hydrogel beads. This study aims to address the issues related to the size of previous hydrogel beads and assess the colon-targeted delivery of probiotic polysaccharides composite hydrogel beads (PPHB).

View Article and Find Full Text PDF

Hydrogels, three-dimensional polymeric networks capable of absorbing and retaining significant amounts of aqueous solution, offer a promising platform for controlled release of desired compounds. In this study, we explored the effects of urea delivery through galactoxyloglucan-sodium alginate hydrogels on the phenotypic and metabolic responses of , a vital oilseed and vegetable crop. The experiments were conducted with four treatments: control (without hydrogel beads and urea), direct urea supplementation (U), hydrogel beads with urea (HBWU), and hydrogel beads without urea (HBWOU).

View Article and Find Full Text PDF

Alginate Hydrogel Beads with a Leakproof Gold Shell for Ultrasound-Triggered Release.

Pharmaceutics

January 2025

Department of Biomedical Engineering, University of Minnesota, 7-105 Hasselmo Hall, 312 Church Street SE, Minneapolis, MN 55455, USA.

Focused ultrasound has advantages as an external stimulus for drug delivery as it is non-invasive, has high precision and can penetrate deep into tissues. Here, we report a gold-plated alginate (ALG) hydrogel system that retains highly water-soluble small-molecule fluorescein for sharp off/on release after ultrasound exposure. The ALG is crosslinked into beads with calcium chloride and layered with a polycation to adjust the surface charge for the adsorption of catalytic platinum nanoparticles (Pt NPs).

View Article and Find Full Text PDF

Chronic wounds are a major health problem, affecting millions of people worldwide. Resistance to treatment is frequently observed, requiring an extension of the wound healing time, and improper care can lead to more problems in patients. Smart wound dressings that provide a controlled drug release can significantly improve the healing process.

View Article and Find Full Text PDF

Natrium Alginate and Graphene Nanoplatelets-Based Efficient Material for Resveratrol Delivery.

Gels

December 2024

Department of Physiology, Iuliu Haţieganu University of Medicine and Pharmacy, Clinicilor 1, 400006 Cluj-Napoca, Romania.

In this study, alginate-based composite beads were developed for the delivery of resveratrol, a compound with therapeutic potential. Two formulations were prepared: one with sodium alginate and resveratrol (AR) and another incorporating graphene nanoplatelets (AGR) to improve drug release control. The beads were formed by exploiting alginate's ability to gel via ionic cross-linking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!