p21-activated kinase 1 (Pak1) is essential for a variety of cellular events, including gene transcription, cytoskeletal organisation, cell proliferation and apoptosis. Pak1 is activated upon autophosphorylation on many amino residues; in particular, phosphorylation on Thr maintains maximal Pak1 activation. In the present study we investigated the protein expression, subcellular localisation and function of Pak1 phosphorylated on Thr (pPak1Thr) in mouse oocytes. pPak1Thr was detected upon meiotic resumption and localised on the condensing chromatin. Thr phosphorylation was markedly suppressed by the Pak1 ATP-competitive inhibitor PF-3758309, but not by the allosteric inhibitors IPA-3 (2.5 μM and 10μM) (1, 1'-dithiobis-2-naphthalenol) and TAT-PAK18 (10 μM), which prevent the binding of Pak1 to its upstream activators GTPase Cdc42/Rac and Pak-interacting exchange factor (PIX), respectively, implying that Pak1 activation may be independent of GTPase and PIX in oocyte meiosis. Inhibition of Pak1 activation concomitantly restrained histone H3 phosphorylation on Ser and consequently inhibited chromatin condensation; however, this phenotype was reversed by concomitant administration of the Pak1 activator FTY720. The changes in the pattern of expression of phosphorylated extracellular signal-regulated kinase 1/2 in response to PF-3758309 or FTY720 were the same as seen for pPak1Thr. These results show that activated Pak1 regulates chromatin condensation by promoting H3 Ser phosphorylation in oocytes after the resumption of meiotic progression.

Download full-text PDF

Source
http://dx.doi.org/10.1071/RD16026DOI Listing

Publication Analysis

Top Keywords

chromatin condensation
12
pak1 activation
12
pak1
10
p21-activated kinase
8
ser phosphorylation
8
oocyte meiosis
8
phosphorylation
5
kinase activity
4
activity required
4
required histone
4

Similar Publications

Previous studies have demonstrated that γ-Aminobutyric acid (GABA) effectively alleviates heavy metal stresses by maintaining the redox balance and reducing the accumulation of reactive oxygen species (ROS). However, little is known about the role of GABA on programmed cell death (PCD) under Cd treatments in plants. The present study investigated the effects of GABA on Cd-induced PCD in two species, oilseed rape (, ), and black mustard (, ).

View Article and Find Full Text PDF

Phase transitions in chromatin: Mesoscopic and mean-field approaches.

J Chem Phys

January 2025

CNRS, Laboratoire PHENIX (Physicochimie des Electrolytes et Nanosystèmes Interfaciaux), Sorbonne Université, 4 Place Jussieu, 75005 Paris, France.

By means of a minimal physical model, we investigate the interplay of two phase transitions at play in chromatin organization: (1) liquid-liquid phase separation within the fluid solvating chromatin, resulting in the formation of biocondensates; and (2) the coil-globule crossover of the chromatin fiber, which drives the condensation or extension of the chain. In our model, a species representing a domain of chromatin is embedded in a binary fluid. This fluid phase separates to form a droplet rich in a macromolecule (B).

View Article and Find Full Text PDF

Infertility can harm a patient in physical, psychological, spiritual, and medical ways. This illness is unusual because it affects the patient's companion and the patient individually. Infertility is a multifactorial disease, and various etiological factors like infection are known to develop this disorder.

View Article and Find Full Text PDF

Cutaneous melanoma (CM) represents a severe skin cancer with a rising incidence at present and limited treatment options. 5-Fluorouracil (5-FU) is widely used, including for CM; however, the innate resistance of this cancer to conventional therapy remains problematic. Quercetin (QUE) is a flavonoid that can sensitize cancer cells to antitumor agents such as 5-FU.

View Article and Find Full Text PDF

Cellular chromatin displays heterogeneous structure and dynamics, properties that control diverse nuclear processes. Models invoke phase separation of conformational ensembles of chromatin fibers as a mechanism regulating chromatin organization . Here we combine biochemistry and molecular dynamics simulations to examine, at single base-pair resolution, how nucleosome spacing controls chromatin phase separation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!