For over 60 years, high doses of lithium (hundreds of milligrams of elemental lithium) have being used to treat bipolar disorder. However, only during the past 20 years the relevant basic and clinical studies have shown that neuroprotective and neurotrophic effects of lithium are possible in much smaller doses ( hundreds of micrograms of elemental lithium). These data indicate a significant potential for the clinical applications of lithium-based drugs in modern neurology for the purposes of prevention and treatment of neurodegenerative and ischemic pathologies. Pharmacological and molecular biology studies indicated that the inhibition of glycogen synthase kinase-syntentase-3 (GSK-3) and induction of brain-derived neurotrophic factors are the main mechanisms of neurotropic actions of lithium. Also, by inhibiting the NMDA receptors, lithium regulates the calcium homeostasis and inhibits the activation of calcium-dependent apotosis. These and other molecular mechanisms of lithium action protect neurons from ischemia and neurodegeneration thus contributing to a significant reduction of neurological deficit in various models of stroke and neurodegenerative diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.17116/jnevro20161162199-108 | DOI Listing |
Mol Psychiatry
January 2025
Department of Psychiatry, University of Oxford, Oxford, UK.
Cognitive and neural mechanisms underlying bipolar disorder (BD) and its treatment are still poorly understood. Here we examined the role of adaptations in risk-taking using a reward-guided decision-making task. We recruited volunteers with high (n = 40) scores on the Mood Disorder Questionnaire, MDQ, suspected of high risk for bipolar disorder and those with low-risk scores (n = 37).
View Article and Find Full Text PDFSci Rep
January 2025
Nano-fabricated Energy Devices Lab, School of Electrical and Computer Eng., University of Tehran, 14395-515, Tehran, Iran.
Core-shell silicon/multiwall carbon nanotubes are one of the most promising anode candidates for further improvement of lithium-ion batteries. Sufficient accommodation for massive volume expansion of silicon during the lithiation process and preventing pulverization and delamination with easy fabrication processes are still critical issues for practical applications. In this study, core-shell silicon/MWCNTs anode materials were synthesized using a facile and controllable PECVD technique to realize aligned MWCNTs followed by a silicon sputtering step.
View Article and Find Full Text PDFNat Chem
January 2025
Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC, USA.
J Colloid Interface Sci
January 2025
School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China. Electronic address:
Lithium-sulfur batteries (LSBs) are considered as the most potential next-generation rechargeable energy storage devices due to their high theoretical energy density. However, the commercialization is severely hampered by the shuttle effect and sluggish sulfur redox kinetics of sulfur cathodes. Herein, we propose MoS/CN heterostructures as potential cathodes for LSBs.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
National Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics, Research Institute of Aero-Engine, Beihang University, Beijing 100191, China. Electronic address:
Hypothesis: Complex emulsions usually consist of aqueous phases, like oil-in-water-in-oil (o/w/o) and water-in-oil-in-water (w/o/w), serving foundational roles in colloid science. Oil-in-oil-oil (o/o/o) emulsions offer new avenues for non-aqueous reagents but face challenges in balancing the forces between multiple organic phases.
Experiments: In this work, we generate o/o/o emulsions by integrating an AC electric field with a double cross-junction microchannel.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!