Characterizing active and inactive brown adipose tissue in adult humans using PET-CT and MR imaging.

Am J Physiol Endocrinol Metab

Vanderbilt University Institute of Imaging Science, Nashville, Tennessee; Chemical and Physical Biology Program, Vanderbilt University, Nashville, Tennessee; Department of Radiology and Radiological Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee; and

Published: July 2016

Activated brown adipose tissue (BAT) plays an important role in thermogenesis and whole body metabolism in mammals. Positron emission tomography (PET)-computed tomography (CT) imaging has identified depots of BAT in adult humans, igniting scientific interest. The purpose of this study is to characterize both active and inactive supraclavicular BAT in adults and compare the values to those of subcutaneous white adipose tissue (WAT). We obtained [(18)F]fluorodeoxyglucose ([(18)F]FDG) PET-CT and magnetic resonance imaging (MRI) scans of 25 healthy adults. Unlike [(18)F]FDG PET, which can detect only active BAT, MRI is capable of detecting both active and inactive BAT. The MRI-derived fat signal fraction (FSF) of active BAT was significantly lower than that of inactive BAT (means ± SD; 60.2 ± 7.6 vs. 62.4 ± 6.8%, respectively). This change in tissue morphology was also reflected as a significant increase in Hounsfield units (HU; -69.4 ± 11.5 vs. -74.5 ± 9.7 HU, respectively). Additionally, the CT HU, MRI FSF, and MRI R2* values are significantly different between BAT and WAT, regardless of the activation status of BAT. To the best of our knowledge, this is the first study to quantify PET-CT and MRI FSF measurements and utilize a semiautomated algorithm to identify inactive and active BAT in the same adult subjects. Our findings support the use of these metrics to characterize and distinguish between BAT and WAT and lay the foundation for future MRI analysis with the hope that some day MRI-based delineation of BAT can stand on its own.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4967150PMC
http://dx.doi.org/10.1152/ajpendo.00482.2015DOI Listing

Publication Analysis

Top Keywords

active inactive
12
adipose tissue
12
bat
12
active bat
12
brown adipose
8
adult humans
8
bat adult
8
inactive bat
8
mri fsf
8
bat wat
8

Similar Publications

DPYD genotype should be extended to rare variants: report on two cases of phenotype / genotype discrepancy.

Cancer Chemother Pharmacol

January 2025

Service de Génomique des Tumeurs et Pharmacologie, Hôpital Saint-Louis, Assistance Publique Hôpitaux de Paris, Paris, France.

The enzyme dihydropyrimidine dehydrogenase (DPD) is the primary catabolic pathway of fluoropyrimidines including 5 fluorouracil (5FU) and capecitabine. Cases of lethal toxicity have been reported in cancer patients with complete DPD deficiency receiving standard dose of 5FU or capecitabine. DPD is encoded by the pharmacogene DPYD in which more than 200 variants have been identified.

View Article and Find Full Text PDF

Objectives: Maternal protein malnutrition alters brain functioning, impairing fetal development. Physical exercise during gestation benefits the fetal organism from maternal adaptive changes that may be neuroprotective. This study evaluated the effect of a low-protein diet associated with maternal voluntary physical activity (VPA) on rats' behavioral and brain electrophysiological parameters in the mother-pup dyad.

View Article and Find Full Text PDF

Metal nanoclusters (NCs), comprising tens to hundreds of metal atoms, are condensed matter with concrete molecular structures and discrete energy levels. Compared to metal atoms and nanoparticles, metal NCs exhibit unique physicochemical properties, especially fascinating electrocatalytic activities. This review focuses on recent progress in the precise synthesis of metal NCs and their applications in electrochemical analysis of various disease biomarkers.

View Article and Find Full Text PDF

Machine learning and clinician predictions of antibiotic resistance in Enterobacterales bloodstream infections.

J Infect

December 2024

Big Data Institute, Nuffield Department of Population Health, University of Oxford, Oxford, UK; NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK; Oxford University Hospitals NHS Foundation Trust, Oxford, UK. Electronic address:

Background: Patients with Gram-negative bloodstream infections are at risk of serious adverse outcomes without active treatment, but identifying who has antimicrobial resistance (AMR) to target empirical treatment is challenging.

Methods: We used XGBoost machine learning models to predict antimicrobial resistance to seven antibiotics in patients with Enterobacterales bloodstream infection. Models were trained using hospital and community data from Oxfordshire, UK, for patients with positive blood cultures between 01-January-2017 and 31-December-2021.

View Article and Find Full Text PDF

Trypanosomatidae diseases, such as Chagas disease and leishmaniasis, are caused by protozoan parasites of the Trypanosomatidae family, namely Trypanosoma cruzi and Leishmania species, respectively. There is an urgent need for new therapies. Both pyridine and thiazole rings are recognized as important scaffolds in medicinal chemistry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!