The effect of hot electrons and surface plasmons on heterogeneous catalysis.

J Phys Condens Matter

Center for Nanomaterials and Chemical Reactions, Institute for Basic Science, Daejeon 305-701, Korea. Graduate School of EEWS, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Korea.

Published: June 2016

Hot electrons and surface-plasmon-driven chemistry are amongst the most actively studied research subjects because they are deeply associated with energy dissipation and the conversion processes at the surface and interfaces, which are still open questions and key issues in the surface science community. In this topical review, we give an overview of the concept of hot electrons or surface-plasmon-mediated hot electrons generated under various structural schemes (i.e. metals, metal-semiconductor, and metal-insulator-metal) and their role affecting catalytic activity in chemical reactions. We highlight recent studies on the relation between hot electrons and catalytic activity on metallic surfaces. We discuss possible mechanisms for how hot electrons participate in chemical reactions. We also introduce controlled chemistry to describe specific pathways for selectivity control in catalysis on metal nanoparticles.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0953-8984/28/25/254002DOI Listing

Publication Analysis

Top Keywords

hot electrons
24
catalytic activity
8
chemical reactions
8
hot
6
electrons
5
electrons surface
4
surface plasmons
4
plasmons heterogeneous
4
heterogeneous catalysis
4
catalysis hot
4

Similar Publications

Time-resolved spectroscopy is an important tool for probing photochemically induced nonequilibrium dynamics and energy transfer. Herein, a method is developed for the ab initio simulation of vibronic spectra and dynamical processes. This framework utilizes the recently developed nuclear-electronic orbital time-dependent configuration interaction (NEO-TDCI) approach, which treats all electrons and specified nuclei quantum mechanically on the same footing.

View Article and Find Full Text PDF

Mixing different metal ions at the B site of ABX perovskites offers a promising approach for addressing challenges related to toxicity, stability and performance in optoelectronic applications. One such example is CsPbSnBr which addresses the toxicity issue posed by lead while allowing us to tune optoelectronic properties such as the band gap. In this work, nearly monodisperse CsPbSnBr quantum dots (QDs) were synthesized with variable Pb/Sn compositions, CsPbBr, CsPbSnBr and CsPbSnBr.

View Article and Find Full Text PDF

Recently, a new plasmon mode, the nodal-line plasmon, was discovered in ZrSiS, which provides promising possibilities for plasmonics or optics. However, there remains a lack of research on the surface plasmon (SP) properties and carrier transport characteristics of ZrSiS. In this paper, we conduct an in-depth study of these properties and compare them with the traditional SP material Au.

View Article and Find Full Text PDF

Raising the operating temperature of mid-wavelength infrared detectors is critical for meeting the low size, weight, and power (SWaP) demands of infrared imaging systems. In this work, we report and analyze a high operating temperature (HOT) InAsSb nBn mid-wave infrared (MWIR) focal plane array (FPA) and single element photodetectors with AlAs/AlSb superlattices as the electron barrier. Under an applied bias of -350 mV, the nBn photodetectors demonstrate a dark current density of 2.

View Article and Find Full Text PDF

Exercise in heart failure with preserved ejection fraction (HFpEF) remains a hot topic, although current treatment strategies have not been shown to improve the long-term prognosis of HFpEF. Previous studies have mostly focused on the roles of endurance training, the mechanisms underlying long-term voluntary exercise have not been elucidated. The purpose of the present analysis was to evaluate alterations in cardiac function in HFpEF mice (HFpEF-Sed) after 6 weeks of voluntary running (HFpEF-Ex), investigate mechanisms, and compare the effects with fluoxetine (HFpEF-FLX).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!