AI Article Synopsis

  • Researchers analyzed gene expression in B lymphoma cells, identifying a gene cluster called BCR.1 that is influenced by B cell receptor (BCR) activation, affecting various cell cycle regulators.
  • Activation of the BCR led to delayed mitosis and abnormalities in cell division, with long-term treatment causing cytogenetic changes.
  • The BCR.1 index can differentiate between activated B cell-like and germinal center B cell-like diffuse large B cell lymphoma, highlighting its importance for discovering new biomarkers.

Article Abstract

To discover new regulatory pathways in B lymphoma cells, we performed a combined analysis of experimental, clinical and global gene expression data. We identified a specific cluster of genes that was coherently expressed in primary lymphoma samples and suppressed by activation of the B cell receptor (BCR) through αIgM treatment of lymphoma cells in vitro. This gene cluster, which we called BCR.1, includes numerous cell cycle regulators. A reduced expression of BCR.1 genes after BCR activation was observed in different cell lines and also in CD10+ germinal center B cells. We found that BCR activation led to a delayed entry to and progression of mitosis and defects in metaphase. Cytogenetic changes were detected upon long-term αIgM treatment. Furthermore, an inverse correlation of BCR.1 genes with c-Myc co-regulated genes in distinct groups of lymphoma patients was observed. Finally, we showed that the BCR.1 index discriminates activated B cell-like and germinal centre B cell-like diffuse large B cell lymphoma supporting the functional relevance of this new regulatory circuit and the power of guided clustering for biomarker discovery.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5216924PMC
http://dx.doi.org/10.18632/oncotarget.9219DOI Listing

Publication Analysis

Top Keywords

regulatory circuit
8
cell receptor
8
combined analysis
8
analysis experimental
8
experimental clinical
8
clinical global
8
global gene
8
gene expression
8
expression data
8
lymphoma cells
8

Similar Publications

Regulatory significance of terminator: A systematic approach for dissecting terminator-mediated enhancement of upstream mRNA stability.

Synth Syst Biotechnol

November 2024

Innovation Center for Advanced Brewing Science and Technology, College of Biomass Science and Engineering, Sichuan University, 24 Southern Yihuan, Chengdu, 610065, PR China.

The primary function of terminators is to terminate transcription in gene expression. Although some studies have suggested that terminators also contribute positively to upstream gene expression, the extent and underlying mechanism of this effect remain largely unexplored. Here, the correlation between terminating strength and upstream mRNA stability was investigated by constructing a terminator mutation library through randomizing 5 nucleotides, assisted by FlowSeq technology, terminator variants were categorized based on the downstream fluorescence intensity, followed by high-throughput sequencing.

View Article and Find Full Text PDF

Efficient Autoinducible Expression of Recombinant Proteins via the DegSU Quorum Sensing System in a Robust .

ACS Synth Biol

January 2025

School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China.

DegSU quorum sensing (QS) system enables autoinducible expression of recombinant proteins in . However, insufficient promoter strength and a complex regulatory circuit limit its practical application. Here, the QS-responsive promoter P was modified by core region mutation, upstream truncation, and addition of activating binding sites, yielding P with a 118.

View Article and Find Full Text PDF

Redox-stimulated catalytic DNA circuit for high-fidelity imaging of microRNA and in situ interpretation of the relevant regulatory pathway.

Biosens Bioelectron

December 2024

Department of Gastroenterology, Hubei Key Laboratory of Tumor Biological Behavior, Zhongnan Hospital of Wuhan University, Wuhan, 430072, PR China; Research Institute of Shenzhen, Wuhan University, Shenzhen, 518057, PR China. Electronic address:

Biomolecules play essential roles in regulating the orderly progression of biochemical reaction networks. DNA-based biocircuits supplement an attractive and ideal approach for the visual imaging of endogenous biomolecules, yet their sensing performance is commonly encumbered by the undesired signal leakage. To solve this issue, here we proposed a glutathione (GSH)-activated DNA circuit for achieving the spatio-selective microRNA imaging through the successive response of a GSH-specific activation procedure and a non-enzymatic catalytic signal amplification procedure.

View Article and Find Full Text PDF

Synthetic genetic circuits program the cellular input-output relationships to execute customized functions. However, efforts to scale up these circuits have been hampered by the limited number of reliable regulatory mechanisms with high programmability, performance, predictability and orthogonality. Here we report a class of split-intron-enabled trans-splicing riboregulators (SENTRs) based on de novo designed external guide sequences.

View Article and Find Full Text PDF

A single vector system for tunable and homogeneous dual gene expression in Escherichia coli.

Sci Rep

January 2025

Department of Physical Chemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia.

Expression of recombinant genes can be controlled using inducible promoters. However, the most commonly used IPTG- and arabinose-inducible promoters result in an 'all-or-nothing' response, leading to fully induced and uninduced bacterial subpopulations. Here, we investigate whether appropriate modifications to these promoter systems can be combined into a single vector system, enabling homogenous expression of two genes of interest that can be precisely tuned using inducer concentration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!