Introduction: Delayed cerebral ischemia (DCI) is a major contributor to morbidity and mortality after subarachnoid hemorrhage (SAH). Data challenge vasospasm being the sole cause of ischemia and suggest other factors. We tested the hypothesis that early autoregulatory failure might predict DCI.
Methods: This is a prospective observational study of cerebral autoregulation following SAH in which the primary end point was DCI at 21 days. Cox proportional hazards and multivariate models were used and the benefit of using multiple indices was analyzed.
Results: Ninety-eight patients were included in the study. There was an increased risk of DCI with early dysautoregulation (odds ratio [OR]: 7.46, 95% confidence interval [CI]: 3.03-18.40 and OR: 4.52, 95 % CI: 1.84-11.07 for the transcranial Doppler index of autoregulation [Sxa] and near-infrared spectroscopy index of autoregulation [TOxa], respectively), but not vasospasm (OR: 1.36, 95 % CI: 0.56-3.33). Sxa and TOxa remained independent predictors of DCI in the multivariate model (OR: 12.66, 95 % CI: 2.97-54.07 and OR: 5.34, 95 % CI: 1.25-22.84 for Sxa and TOxa, respectively). There was good agreement between different indices. All 13 patients with impaired autoregulation in all three methods developed DCI.
Conclusions: Disturbed autoregulation in the first 5 days after SAH is predictive of DCI. Although colinearities exist between the methods assessed, multimodal monitoring of cerebral autoregulation can aid the prediction of DCI.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-3-319-22533-3_40 | DOI Listing |
Acta Pharm Sin B
December 2024
Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610041, China.
The neurovascular unit (NVU) is highly responsible for cerebral homeostasis and its dysfunction emerges as a critical contributor to Alzheimer's disease (AD) pathology. Hence, rescuing NVU dysfunction might be a viable approach to AD treatments. Here, we fabricated a self-regulated muti-functional nano-modulator (siR/PIO@RP) that can intelligently navigate to damaged blood-brain barrier and release therapeutical cargoes for synergetic AD therapy.
View Article and Find Full Text PDFFluids Barriers CNS
January 2025
Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, Japan.
Background: Cerebral autoregulation is a robust regulatory mechanism that stabilizes cerebral blood flow in response to reduced blood pressure, thereby preventing cerebral ischaemia. Scientists have long believed that cerebral autoregulation also stabilizes cerebral blood flow against increases in intracranial pressure, which is another component that determines cerebral perfusion pressure. However, this idea was inconsistent with the complex pathogenesis of normal pressure hydrocephalus, which includes components of chronic cerebral ischaemia due to mild increases in intracranial pressure.
View Article and Find Full Text PDFAlzheimers Res Ther
January 2025
Radiology Department, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China.
Background: The imbalance of glutamate (Glu) and gamma-aminobutyric acid (GABA) neurotransmitter system plays a crucial role in the pathogenesis of Alzheimer's disease (AD). Riluzole is a Glu modulator originally approved for amyotrophic lateral sclerosis that has shown potential neuroprotective effects in various neurodegenerative disorders. However, whether riluzole can improve Glu and GABA homeostasis in AD brain and its related mechanism of action remain unknown.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Histology and Embryology, Ankara University School of Medicine, Ankara, Turkey.
NMDAR antagonists, such as memantine and ketamine, have shown efficacy in treating neurodegenerative diseases and major depression. The mechanism by which these drugs correct the aforementioned diseases is still unknown. Our study reveals that these antagonists significantly enhance 20S proteasome activity, crucial for degrading intrinsically disordered, oxidatively damaged, or misfolded proteins, factors pivotal in neurodegenerative diseases like Alzheimer's and Parkinson's.
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
December 2024
School of Pharmacy, Shandong University of Traditional Chinese Medicine Ji'nan 250355, China State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co., Ltd. Linyi 276005, China.
This study aims to investigate the protective effect and potential mechanism of Jingfang Granules(JF) on the mouse model of chronic fatigue syndrome(CFS). Mice were randomized into normal, model, and low-, medium-, and high-dose(0.9, 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!